Из каких сталей сделаны привычные нам вещи. Что можно сделать из отходов черного металла — железа, стали, нержавейки, чугуна Что можно сделать стали

💖 Нравится? Поделись с друзьями ссылкой

Решение потребностей строительного сектора 21 столетия с соблюдением принципов устойчивого развития делает сталь самым лучшим материалом. Приводим топ десять причин использования стали.

Более половины объема произведенной в мире стали используется при строительстве жилых домов и инфраструктуры. При этом, приблизительно 1,6 миллиарда людей по всему миру проживают в плохих жилищных условиях и по оценкам – 100 миллионов бездомных. До 2030 года свыше 1 миллиарда людей планируют переехать в города.

Сейчас наши потребности в домах и квартирах намного выше, чем были прежде и продолжают расти. В то же время мы живем в мире, где необходимо искать новые пути для того, чтобы сделать больше и с меньшими затратами. Мы можем решить эти противоречивые задачи с помощью стали. Сталь необходима для рационального образа жизни. Это прочный, универсальный, долговечный материал, пригодный для повторного использования и доступный по цене.

Что же делает сталь лучшим материалом строительного сектора 21 столетия с учетом принципов устойчивого развития? Приводим топ десять причин использования стали.

1. Сталь повторно используют

Сталь является самым перерабатываемым материалом в мире: все, что сделано из стали в вашем доме, можно переработать и произвести новую продукцию. В строительном секторе коэффициент вторичного использования стали составляет свыше 85%. Практически все стальные предметы в вашем доме, придя в негодность, не останутся лежать металлоломом на долгие годы, а будут переработаны в болты самолета, двери автомобиля или панель ветроустановки. Так как сталь является перерабатываемым материалом, элементы конструкций зданий или целого дома легче изначально создавать с возможностью повторного использования.

2. Сталь — долговечный материал

Сталь «живет» значительно дольше людей. Такая долговечность возможна благодаря прочности материала. Ваш дом будет эксплуатироваться на протяжении многих лет без огромных затрат времени, денег и ресурсов на ремонт или перестройку. Через сотню лет ваш дом будет таким же прочным, как и сейчас. В нем, возможно, будут жить и ваши правнуки.

3. Сталь — легкий, но прочный материал

Сегодня сталь значительно легче, чем когда-либо, при этом так же прочна. Благодаря высокой прочности и интеллектуальному проектированию, каркас современного здания на 50% легче, чем стальной каркас, который использовался 30 лет назад. Это снижает выбросы CO2, а также стоимость транспортировки, строительства и сборки. Облегченная сталь позволяет установить более тонкие и широкие оконные рамы, которые пропускают больше дневного света.

4. Сталь — энергосберегающий материал

Сталь является хорошим изоляционным материалом. Она позволяет экономить большое количество энергии, что, в свою очередь, снижает воздействие на окружающую среду и плату за потребление ресурсов. Например, стальные панели обеспечивают отличную герметичность, которая позволяет минимизировать энергопотребление до 30% при эксплуатации здания.

5. Сталь устойчива к климатическим изменениям

Сталь эффективно эксплуатируется в любых климатических условиях. Стальная кровля быстрее отражает тепло, создавая более прохладную атмосферу в домах регионов с жарким климатом. В странах с низкой температурой воздуха используют стальные панели с двойными стенками и хорошей изоляцией. Для того, чтобы лучше удерживать тепло, кровлю и стены выполняют в темных тонах для повышения уровня поглощения солнечной энергии.

6. Сталь позволяет быстро и легко строить

Строительные стальные конструкции в большинстве случаев собираются из компонентов за пределами строительной площадки, при этом на заводе соблюдаются точные технические параметры. Конструкции можно легко транспортировать и собирать. Это облегчает работу строителей и позволяет сократить ее время на 40%, тем самым экономя энергию и деньги.

7. Сталь делает жизнь легче

Стальная продукция требует минимального обслуживания в течение долгого времени, что приводит к меньшему использованию ресурсов по сравнению с альтернативными материалами, которые требуют более частой замены. Это означает – меньше времени на ремонты и больше – на себя и семью.

8. Сталь защищает нас и наши дома

Сталь имеет самую высокую удельную прочность по сравнению с другими строительными материалами. Благодаря своей прочности и выносливости стальные конструкции могут проектироваться так, чтобы выдерживать стихийные бедствия, включая ураганы и землетрясения. Сталь устойчива к воздействию термитов или грибков. Она имеет высокий предел огнестойкости. Стальные замки и двери помогают хранить в безопасности все, что нам дорого.

9. Сталь позволяет реализовать творческий потенциал

Стальные соединения легко принимают необходимую форму, что позволяет проектировщикам и архитекторам воплощать в жизнь свои самые креативные мысли. Здания со стальным каркасом легко адаптируются и имеют высокую степень гибкости. Благодаря этому она считается наилучшим материалом для того, чтобы реконструировать старые постройки, например, склады или ж/д станции, в современные жилые или служебные помещения, продлевая их срок службы.

10. Сталь красива

Со сталью можно себя не ограничивать, когда дело касается дизайна. Ее четкие линии и разнообразие поверхностей делают материал предпочтительным для дизайнеров. Сталь можно использовать дома для создания идеальной отделки спинки в изголовье вашей кровати в стиле ар-нуво, стильной стальной лестницы или ультрасовременной кухонной печи. Кроме того, сталь гармонично сочетается с другими предметами, ее можно легко комбинировать со многими материалами для создания красивого дома.

Возможно вам будет интересно.

В жизни мы постоянно сталкиваемся со сплавами, самый распространенный из которых сталь. Поэтому нет ничего удивительно, что у кого-нибудь да возникнет вопрос о том, как делают сталь?

Сталь – это один из сплавов железа и углерода, получивший широчайшее распространение в повседневной жизни. Процесс производства стали многоступенчатый и состоит из нескольких этапов: добыча и обогащение руды, получение агломерата, производства чугуна и выплавка стали.

Руда и агломерат

Месторождения руд позволяют добывать как богатые, так и бедные породы. Богатую руду можно сразу использовать как производственное сырье. Чтобы можно было выплавлять и бедную руду, ее необходимо обогатить, то есть увеличить в ней содержание чистого металла. Для этого руду измельчают и, применяя различные технологии, отделяют частицы, богатые соединениями металла. Например, для железных руд применяют магнитную сепарацию – воздействие магнитным полем на исходное сырье с целью отделение частиц богатых железом.

Получается низкодисперсионный концентрат, который спекают в более крупные куски. Результат обжига железных руд и есть агломерат. Виды агломератов получили название по основному сырью, входящему в их состав. В нашем случае это железорудный агломерат. Теперь, чтобы понять, как делают сталь, необходимо проследить дальнейший технологический процесс.

Производство чугуна.

Чугун выплавляют в доменных печах, которые функционируют по принципу противотока. Загрузка агломерата, кокса и другого шихтового материала осуществляется сверху. Снизу вверх, навстречу этим материалам, поднимаются потоки раскаленного газа от сгорания кокса. Начинается череда химических процессов, в результате чего происходит восстановление железа и насыщение его углеродом. Температурный режим при этом сохраняется в районе 400-500 градусов Цельсия. В нижних частях печи, куда постепенно опускается восстановленное железо, температура увеличивается до 900-950 градусов. Образуется жидкий сплав железа с углеродом – чугун. К основным химическим характеристикам чугуна относятся: содержание углерода более 2,14 %, обязательное наличие в составе серы, кремния, фосфора и марганца. Чугун отличается повышенной хрупкостью.

Выплавка стали.

Теперь мы приблизились к последнему этапу, позволяющему узнать, как делают сталь. В химическом плане сталь отличается от чугуна пониженным содержанием углерода; соответственно, основная задача производственного процесса – уменьшить содержание углерода и других примесей в основном сплаве железа. Для производства стали используют мартеновские печи, кислородные конвертеры или электропечи.

По различным технологиям расплавленный чугун продувается кислородом при очень высоких температурах. Происходит обратный процесс – окисление железа на уровне примесей, входящих в сплав. Полученный шлак в дальнейшем убирается. В результате продувки кислородом понижается содержание углерода и происходит преобразование чугуна в сталь.

В сталь могут добавляться легирующие элементы, изменяющие свойства материала. Поэтому сталью считается сплав железо-углерод с содержанием железа не менее 45 %.

Вышеописанные процессы разъяснили, как делают сталь, из каких материалов и с применением каких технологий.

В природе железо встречается только в виде руды, то есть с примесью минералов. Ещё в древности люди научились извлекать металл из руды, плавя её в специальных доменных печах при очень высокой температуре. Жидкий металл разливают по формам и охлаждают. Так получают чугунные заготовки для рельсов, оград, ванн, батарей отопления и даже сковородок. Но чугун непрочен, он может треснуть от сильного удара.

Сталь

150 лет назад изобрели мартеновскую печь, где чугун снова расплавляют, обогащают специальными добавками и получают сталь - металл более прочный, чем чугун, и в то же время упругий. Из него изготавливают множество разных вещей.

Ржавчина

Если железный предмет постоянно соприкасается с водой или влажным воздухом, его разъедает ржавчина. Ученые придумали, как выплавить нержавеющую сталь, чтобы она не портилась от времени и всегда блестела. Из нержавейки делают, к примеру, кастрюли и столовые приборы.

: Чтобы предметы из железа не ржавели, их покрывают лаком или особой красной краской - суриком, а чтобы чугунная ванна не ржавела, её покрывают эмалью, а изделия из стали (например кузов машины) другим металлом - цинком.

Золото тоже метал, как и железо. Но, в отличие от железа, оно не смешивается с минералами, а залегает в горах или в руслах рек маленькими кусочками. Такие кусочки чистого золота называют самородками.

От булавки до самолёта

Невозможно перечислить, сколько разных вещей делают из железа: от самых маленьких - до самых больших. Из чугуна и стали производят автомобили и автобусы, опоры для семафоров, дорожные указатели, двери, трамвайные рельсы, поезда, корабли и двигатели самолётов. Железо входит в состав железобетона, из которого строят мосты и небоскрёбы.

Сталь получают из железа. Из нее делают множество предметов - от нефтяных вышек до канцелярских скрепок. Наряду с 80 чистыми металлами людям известно немало сплавов - смесей металлов, качества которых отличаются от качеств чистых металлов. Башенные краны, мосты, другие сооружения делают из стали, содержащей до 0,2% углерода. Углерод делает сталь прочнее, причем она сохраняет ковкость. Сталь покрывают краской для защиты от коррозии.

Железо и сталь

Важнейшие металлы и сплавы

Алюминий . Очень легкий серебристо-белый металл, не подверженный коррозии. Его получают из бокситов путем электролиза. Из алюминия делают электропровода, самолеты, корабли (см. статью « «), автомобили, банки для напитков, фольгу для приготовления пищи. Алюминиевые банки для напитков очень легкие и прочные.

Латунь . Ковкий сплав меди и цинка. Из латуни делают украшения, орнаменты, музыкальные инструменты, винты, кнопки для одежды.

Бронза . Известный с древнейших времен ковкий, не подверженный коррозии сплав меди и олова.

Кальций . Мягкий серебристо-белый металл. Входит в состав известняка и мела, а также костей и зубов животных. Кальций в человеческом организме содержится в костях и зубах. Он использует­ся в производстве цемента и высоко качественной стали.

Хром . Твердый серый металл. Ис­пользуется в производстве нержавеющей стали. Хромом покрывают металлические изделия в защитных целях и для придания им зеркального блеска.

Медь . Ковкий красноватый металл. Из меди делают электропровода, резервуары для горячей . Медь входит в со­став латуни, бронзы, мельхиора.

Мельхиор . Сплав меди и никеля. Из него делают почти все «серебряные» монеты.

Золото . Мягкий неактивный ярко-желтый металл. Используется в и в ювелирном деле.

Железо . Ковкий серебристо-белый ферромагнетик. Добывается в основном из руды в доменных печах. Используется в инженерных конструкциях, а также в производстве стали и сплавов. В нашей тоже есть железо.

Свинец . Тяжелый ковкий ядовитый синевато-белый металл. Добывается из минерала гале­нита. Из свинца делают электрические батареи, крыши и экраны, защищающие от рентгеновских лучей.

Магний . Легкий серебри­сто-белый металл. Горит ярко-белым пламенем. Используется для сигнальных огней и фейерверков. Входит в состав легких сплавов. В праздничных ракетах есть магнии и другие металлы.

Ртуть . Тяжелый серебристо-белый ядовитый жидкий металл. Используется в термометрах, входит в состав зубной амальгамы и взрывчатых веществ.

Платина . Ковкий се­ребристо-белый неактивный металл. Ис­пользуется в качестве катализатора, а так­же в электронике и в производстве ювелирных изделий. Платина не вступает в реакции. Из нее делают украшения.

Калий . Легкий серебристый металл. Очень химически активен. Калиевые соединения входят в состав удобрений.

Припой . Сплав олова и свинца. Плавится при сравнительно низкой температуре. Используется для спайки проводов в электронике.

Натрий . Мягкий серебристо-белый хими­чески активный металл. Входит в состав поваренной . Используется в производстве натриевых ламп и в химической промышленности.

Олово . Мягкий ковкий серебристо-белый металл. Слоем олова сталь защищают от коррозии. Входит в состав таких сплавов, как бронза и припой.

Титан . Прочный белый ковкий металл, не подверженный коррозии. Из титановых сплавов делают космические аппараты, са­молеты, велосипеды.

Вольфрам . Твердый серовато-белый металл. Из него изготавливают нити ламп накаливания и детали электронных приборов. Из стали с Нить вольфрамом делают накаливания режущие инструменты.

Серебристо-белый радиоактивный металл, источник ядерной энергии. При­меняется при создании ядерного оружия.

Ванадий . Твердый ядовитый белый металл. Придает прочность стальным сплавам. Используется как катализатор при производстве серной кислоты.

Цинк . Синевато-белый металл. Добывает­ся из цинковой обманки. Используется для гальванизации железа, производства электробатареек. Входит в состав латуни.

Переработка металлов

Переработка - это повторное использование сырья, способ сохранить природные ресурсы. Металлы легко поддаются переработке, т.к. их можно переплавить и получить металл такого же качества, как и тот, что получается непосредственно из руды. Переплавлять сталь и алюминий несложно и выгодно. Медь, олово, свинец также подвергают­ся переплавке. Железные и стальные предметы можно извлечь из кучи отходов при помощи сильного магнита. Большую часть стали для переработки добывают из старых автомобилей и станков, но часть ее получают из фабричных металлических опилок и даже бытовых отходов. Стальной лом смешивают с расплавленным железом и получают новую сталь.

Алюминий - не ферромагнетик, но алюминиевые отходы можно отделить от железного лома при помощи электромагнита. Больше половины банок для напитков делают из алюминия, полученного пу­тем переработки. Чтобы узнать, сделана банка из стали или алюминия, возьми магнит. К стальной банке он прилипнет, а к алюминиевой - нет. Переработка металлолома требует значительно меньше , чем получение металла из руды, и отходов при переработке меньше. Теоретически металл можно перерабатывать сколько угодно раз. Для переработки алюминиевых банок необходимо в 20 раз меньше энергии, чем для производства нового алюминия.


    Обработка стали при изготовлении холодного оружия. Предметы сделанные из стали

    Изделия из листового металла – рассматриваем их особенности + Фото, видео

    В быту и в производстве, не говоря уже о строительной сфере – повсюду используются изделия из листового металла, с которыми многие из вас сталкивались не только на фото. Далее мы рассмотрим наиболее простые, но крайне необходимые варианты.

    Чем может стать листовой металлопрокат?

    Трудно представить окружающую нас действительность без листов стали или даже жести. Взгляните на фотографии строящегося или благоустраиваемого участка. Бочки и садовые тележки, корпуса многих электроинструментов – все это сделано из проката. Не говоря уже о различном садовом инвентаре, и всевозможных профилях, использующихся в строительстве.

    К первой группе можно отнести лейки и ведра, а ко второй – профильный лист, металлочерепицу, ливневые желоба и водостоки, вентиляционные короба и дымоходы. Вот строительные изделия мы и рассмотрим далее, от форм-факторов до правильного выбора. Как правило, для перечисленных вариантов проката используют обычно тонкую сталь, оцинкованную или с полимерным покрытием. Также можно приобрести недорогие желоба, водостоки и дымоходы у жестянщиков.


    По тому, из чьих рук выходят эти изделия, нетрудно понять, что изготавливаются они кустарными способами из жести. Особо можно отметить поковки из листового металла, выполненные в кузнице, горячим или холодным методом. Среди прочего это могут быть декоративные элементы для тех же желобов и дымоходов, которые не стыдно запечатлеть на фото.

    Основные критерии выбора профильного листа для кровли

    Приобрести профнастил сегодня можно без каких-либо сложностей на крышу любой конфигурации, особенно если речь идет о кровельной черепице в комплекте с доборными элементами. К последним относятся коньковые планки, ендовы для соединения многоскатных конструкций и всевозможные заглушки, снегозадержатели и карнизы. Гораздо сложнее подобрать по фото в каталогах профильный лист, поскольку волны могут быть разной высоты и ширины, с большим или малым шагом между ними.


    Прежде всего, следует учесть, что эти волны являются своеобразными ребрами жесткости, а значит, чем они выше и чем меньше их ширина, тем выше прочность листа на изгиб. Лучше всего взять за правило обращать внимание на маркировки. Если вы увидите букву Н в начале обозначения, это будет говорить о том, что лист несущий, кровельный, с достаточно высоким уровнем жесткости. Буква С всегда относится к стеновым листам, у которых менее выраженные волны гофры.

    В последнее же время все больше популярны профили с объединенной характеристикой, то есть НС, которые пригодны и как кровельные, и в качестве стеновых. Визуально, как и на фото в каталогах, их можно различить только по высоте волны и наличию (Н, НС) либо отсутствию (С) ребер жесткости. Немалую роль при выборе играет толщина листа и защитное покрытие. С одной стороны, чем тоньше профнастил, тем он дешевле, но если вы легко можете изогнуть пальцами край листа, то же самое сможет сделать и сильный порыв ветра, ударив под свес крыши.


    Поэтому оптимальной считается толщина от 0,6 до 0,8 миллиметра, листы в пределах 0,9-1 миллиметра будут надежнее, но и тяжелее. Теперь о покрытиях. Если увидите маркировку АЦ – перед вами марка с алюминиево-цинковым защитным слоем, довольно ненадежным и легко деформирующимся. Также бывают цинковые, нанесенные электролизом, которые делятся на 3 класса, по количеству цинка на 1 м2: до 220, до 275 и более 275 граммов. И не забываем про устойчивые к коррозии полимерные покрытия.

    Ливневые системы, или несколько слов о выборе водостоков

    Кому-то нравятся легкие пластиковые желоба, но они хороши там, где нет задуваемых на крышу ветром листьев, мелких веток и прочего мусора. Гораздо надежнее в этом отношении металлические водостоки, изготавливаемые из листовой стали. Они значительно дольше противостоят возникновению царапин и не деформируются от летних высоких температур, как пластиковые, выдерживая от -40 до +120 и выше.


    Особенно важна прочность зимой, когда вероятны чрезмерные снеговые нагрузки и намерзание льда, поэтому жестяные желоба устанавливать не рекомендуется, они быстро деформируются под нагрузкой. Сталь гораздо устойчивее на изгиб. Не стоит забывать, что металлопрокат бывает разный, и среди прочего листовой бывает медь, из которой тоже изготавливают ливневые системы. Они красиво смотрятся на фото, и удобны, благодаря мягкости материала, то есть, если тот же пластик гнется на излом, то деформацию меди легко исправить.


    Встречаются и водосточные системы из алюминия, которые ни в коем случае не стоит сочетать с желобами и кровельным материалом из меди, поскольку под воздействием дождевой воды начинается гальваническая реакция. В результате в негодность приходят элементы из обоих металлов. В остальном алюминиевые водостоки удобны своей легкостью, прочностью и устойчивостью к коррозии. Но, как и медные, они очень дороги.

    Вентиляционные короба – что нужно о них знать?

    Трудно найти дом, в котором не было бы магистральной шахты для вентилирования помещений. Как правило, в нее выходят отдушины с кухни и из санузла, то есть из мест, где имеют обыкновение скапливаться неприятные запахи. При этом каналы бывают двух типов: основные и сопутствующие (спутники). Последние как раз и находятся обычно непосредственно в стене квартиры, в виде встроенных в нее металлических коробов.


    Если проломить этот участок (в стремлении расширить площадь) и срезать металл, то образуется ниша с отверстиями в полу и в стене под потолком. И в этом нет ничего хорошего, перед вами – остатки вентиляции соседей снизу. Каналы обычно имеют прямоугольное или круглое сечение, в виде соответствующих профилей выпускаются и короба из оцинкованной стали. Толщина металлического листа обычно составляет от 0,5 до 1,25 миллиметров. Наибольшей популярностью пользуются квадратные контуры, которые проще заделывать в стены, однако круглые гибкие вентиляционные трубы имеют меньшее сопротивление прохождению воздуха.

    Соединение у прямоугольных секций преимущественно делается фланцевое, как более простое, реже применяется фальцевый крепеж элементов. В круглых модульных соединениях иногда целесообразно выполнять ниппельное соединение. В частном доме такие короба обычно протягиваются от кухонной вытяжки до отверстия отдушины или трубы, выходящей на крышу. Места соединения отдельных сегментов одновременно являются и ребрами жесткости. При этом следует учитывать, что чем мощнее вытяжная система, тем больше шума будет в металлическом коробе.


    Чтобы избежать сильного гула, образуемого ветровым потоком, можно устанавливать дополнительную секцию глушителя, разделенную перфорированными пластинами. Также широко практикуется покрытие канала по внешней стороне звукоизоляцией. В качестве альтернативы можно использовать гофрированные металлические рукава, предварительно их растянув, чтобы внутри было меньше препятствий для вытягиваемого воздуха.

    Для нормальной циркуляции воздуха в помещении пропускная способность вентиляционного канала должна быть не ниже 3 кубометров в час, с учетом, чтобы за сутки помещение полностью проветрилось.

    Особенности металлических дымоходов

    Кирпичные трубы, жерла которых поднимаются над крышами сквозь чердаки загородных домов и так красиво смотрятся на фотографиях, выкладываются по тому же принципу, что и стены, то есть в 1 или 1,5 ряда. Обязательно нужен фундамент, а внутри не избежать неровностей швов. Металлические дымоходы в корне отличаются уже тем, что, по всем правилам, должны быть изготовлены из двух контуров металла.


    То есть, по сути, это две трубы круглого сечения с разными диаметрами, вложенные одна в другую, а промежуток между ними заполняется термоизоляцией. Толщина утеплителя, в качестве которого обычно берут керамзит или базальтовую вату, должна быть не меньше 100 миллиметров. В некоторых случаях допускается использовать одноконтурные секции, в частности там, где нет выброса низкотемпературных газов, создающих благоприятные условия для конденсата. Сталь (зачастую – нержавеющая) обычно используется с примесью молибдена, для большей устойчивости к воздействию кислот и щелочей.

    Иногда применяют оцинкованный металлопрокат. Толщина металла каждой секции должна быть не менее 1 миллиметра, поэтому не рекомендуется выбирать кустарные дымоходы из тонкой жести и сопутствующие им фасонные изделия, полученные из тонкокатаного листа. Также очень низкий срок службы у труб из углеродистой стали, он не превышает 5 лет, и результаты работы коррозии нередко можно увидеть на фото. Соединение стального листа в круглый профиль осуществляется сваркой, что обеспечивает высокую надежность труб. Жестяные же секции обычно изготавливают фальцевым соединением с низкой герметичностью.


    Основное преимущество металлических дымоходов перед кирпичными и асбоцементными – простота сборки. Секции соединяются между собой специальными фасонными элементами, подобно конструктору, особенно если есть инструкция с подробными фотоснимками или схемами. При монтаже нет необходимости использовать жесткие крепежи, поскольку модули стыкуются достаточно плотно. Также отличием от кирпичной кладки является отсутствие завихрений нагретого воздуха, вследствие чего повышаются аэродинамические свойства. На гладких стенках же практически не оседает сажа. Секции стальных дымоходов можно использовать, как вкладыши в кирпичных печных трубах, заполняя промежутки керамзитом.

    remoskop.ru

    Сплавы металлов | Мод "Властелин колец" для Minecraft вики

    На данной странице представлены все возможные сплавы в моде.

    Бронзовый слиток Править

    Бронзовый слиток

    Вознобновимость Вместимость
    Да 64

    Бронзовый слиток - это основной и наиболее распространённый сплав мода, делающийся из меди и олова. Он является более дешёвой альтернативой железа, и используется для создания бронзовой экипировки и бронзовой брони, а также для создания многих других предметов. Доспехи Ближних Харадримов и воинов Таутетрим куют именно из бронзы.

    Создавая бронзовый слиток, игрок получает достижение «Бронзовая награда».

    При создании бронзовых слитков в любой кузнице, игрок получает достижение «Двойная бронза.»

    Рецепт создания Править

    Бронзовые слитки могут быть изготовлены на стандартном верстаке. Для этого поместите медный слиток и оловянный слиток в верстак в любом месте, чтобы создать один бронзовый слиток (до Public beta 25 было два)

    Теперь же гораздо выгоднее получать бронзу в плавильной печи, поскольку из тех же руд можно получить в два раза больше слитков.

    Галворновый слиток Править

    Галворновый слиток

    Гномья сталь Синих гор - это сплав, использующийся гномами Синих гор. Он выглядит почти также, как и гномья сталь, но с более голубоватым оттенком из-за Сарллуина, который входит в рецепт создания.

    После выплавки гномьей стали Синих гор, игрок получает достижение "Кузнец Синих гор".

    Блок гномьей стали Синих гор

    Рецепт создания Править

    Гномью сталь Синих гор можно изготовить в гномьей кузнице, путём сплавления Сарллуина с железным слитком или рудой.

    Итильдин

    Вознобновимость Вместимость
    Да 64

    Итильдин - это материал, первоначально используемый гномами Кхазад-дума и эльфами нолдор в Эрегионе, чтобы сделать надписи и украшения, которые можно увидеть только под лунным светом, подобно лунным рунам. Он был добавлен в мод в Public beta 30.

    Слово итильдин с синдарина означает "лунная звезда".

    Он используется для создания долота, которым можно писать лунные руны, а также используется в рецепте крафта гномьей двери.

    Рецепт создания Править

    Его можно сделать только в эльфийской кузнице, путём сплавления мифрилового самородка с серебряной рудой или слитком.

    Моргульская сталь Править

    Моргульская сталь

    Вознобновимость Вместимость
    Нет 64

    Моргульская сталь - это сплав кристаллов гулдурила и орочьей стали, использующийся для создания моргульского клинка, который накладывает на противника эффект иссушения, и брони, которая незначительно уменьшает прочность оружия, ударяющего по ней.

    Блок моргульской стали

    Моргульскую сталь можно изготовить только на орочьей кузнице, путем сплавления орочьей стали или моргульской железной руды с гулдурилом. Моргульскую сталь также можно получитт, переплавляя ненужные предметы, сделанные из данного материала.

    Рецепт создания Править

    Позолоченное железо Править

    Позолоченное железо

    Уручья сталь - это сплав, изготовить который можно только в орочьей кузнице. Данный материал используют для создания снаряжения Урук-Хай Изенгарда, и уруков Гундабада. Оружия и броня из этой стали по характеристикам равна гномьим и эльфийским аналогам. Из этих слитков также можно сделать уручьи врата.

    ru.lotrminecraftmod.wikia.com

    Хороший металл для самодельного холодного оружия

    Этюд 1. Черняга или Ода водопроводным трубам

    Здесь поле для захвата широченное: это и полоса со стройки, уголки, трубы от батарей, швеллера, арматура. Этого добра всегда можно везде найти в сколь угодно большом количестве. «А зачем?» - спросят поклонники высокотехнологичных сплавов и сталей. А очень просто. Из чего делать накладки, всякие кольца и прочее? Ясно, что самое простое и дешевое – черняга.

    Теперь поговорим о том, как можно улучшить качество нашего материала. Вышеперечисленные изделия сделаны из ковкого железа и хорошо обрабатываются прессовкой и ковкой. При этом от деформаций, металл приобретает более высокую твердость и прочность. Да, я поклонник холодной ковки, что делать? Но это реально работает! Например, для изготовления накладок на какой-нибудь нож для выживания я бы взял не просто пластину нужной толщины, а полосу раза в 2 толще, чем надо и разогнал бы ее до нужной толщины холодной ковкой, тем самым упрочнил металл и значительно увеличил качество моего изделия. Вообще качество металла в большой степени зависит от того, как его обрабатывают. Можно и из арматурины выковать классный штык-нож хорошего заводского качества, а можно и высокотехнологичную сложнолегированную сталь испортить так, что только в мусор и годится.

    Холодной ковкой мне удалось довести по прочности кромки лезвия сталь 3 до рессорно-пружинной 65Г (сырой, с завода).

    Еще один пример полезного наклепа – хромоникелевая нержавейка. Отличить ее не сложно: она не полируется болгаркой, а покрывается сизой пленкой окислов. После расковки в 2-3 раза она становится пружинистой и упругой, лично проверял. Про латунь уже писал, повторяться не буду.

    Ниже – нож-меч, кованный из хромоникелевой нержавейки.

    Но, но, но…важно, как и везде иметь чувство меры! Здесь правда подскажет только опыт. Если перебить и измочалить сталь чрезмерной уковкой или неправильной техникой ковки, то ничего хорошего не выйдет, треснет и сломается. Здесь работает только одно правило: чем тверже сталь, тем хуже и меньше она прессуется, тем вероятнее ее растрескивание.

    Техника ковки хорошо описана у Кузнецова, но это для горячей. Для холодной достаточно взять молоток с круглым бойком.

    Еще один вариант применения холодной обработки – это проделывание отверстий. Можно конечно взять дрель и за минуту наковырять дырок, где надо. А можно пробить их. Это трудно, долго, но зато отверстие не будет ослаблять наше изделие и само по себе будет лучше держать форму. Придется правда стачивать розочки рядом с дыркой, но оно того стоит. Пробивать можно обычным строительным гвоздем для бетона, они копейки стоят. Желательно конечно сделать специальную приспособу под это дело, но при должной сноровке можно и с помощью плоскогубцев и молотка справиться. Забегая вперед, скажу, что этот способ выручает там, где нужно просверлить уже закаленную тонкую (1-3 мм) сталь, режим термообработки которой неизвестен или нет возможности (или желания) перезакаливать. Нужно только под дырку подложить гайку чуть большего номера, чем отверстие, иначе вашу заготовку просто разорвет трещиной.

    Отдельно стоит сказать об арматуре. В ней металл содержит довольно много углерода и первичная закалка у нее неплохая. При наличии горна и угля из нее можно делать очень хорошие вещи.

    Теперь пару слов про защиту от коррозии. Это больное место любых сталей, кроме разве что нержавейки и высоколегированных металлов (сия участь не избежала и цветных сплавов, лично видел прогнивший насквозь уголок из дюраля)

    Неплохой способ придумали сварщики-автомобилисты: пока металл еще горячий (светится) нужно быстро намазать его солидолом. Довольно длительное время так обработанная сталь не поддается ржавчине. Вот, в общем-то, и все о водопроводных трубах.

    Этюд 2. У10 и иже с ней

    Здесь материала тоже много. Но и обработка сложнее. Здесь уже необходимо уметь проводить термообработку и знать ее режимы. Но что собственно обрабатывать?

    Начнем с гаража и дачи. Для кухонных ножей (а также каких-нибудь скрытых лезвий-стилетов) хорошо подойдет старая тупая пила, которую точить ну никак не охота. Здесь радует простота обработки: закаливать ее не надо, достаточно вырезать, наклепать спуски и кромки, отшлифовать и можно спокойно заниматься всякими резными рукоятями, зеркальной полировкой и прочими художественными изысками. Наклепка производится, пока торец не станет в 2 раза тоньше, чем остальная пила. Здесь так же лучше поэкспериментировать, благо, что материала хватает.

    Хорошую твердость и качество имеет пружинная сталь. Ленточные пружины от часов, обычные от стиральных машин…свою боевую цепь я делал именно из пружины. Из нее же можно сделать классный стилет-иглу (тоже когда-то делал)

    Циркулярные диски стоит перезакаливать, т.к. с современной логикой «экономии» режущие кромки у диска из твердых сплавов, а остальной металл – недокаленный, вязкий, но углерода там, в принципе достаточно. В этом плане очень выигрывает советский инструмент, который в отличие от современного закаливали полностью. Если вы купили участок в какой-нибудь глухой деревне, то вам может о-о-очень сильно повезти: я на своем нашел огромный циркулярный диск (смотри статью «боевой тесак»), 6 (!) лезвий от шпоночного станка. Последнее – изумительный материал для ножей! Древнегерманский нож сакс из этих полотен:

    Вообще хорошо закаленную сталь, довольно просто отличить от обычной стали по звону. У мягкой черняги звон глухой, а у закаленной – высокий чистый звук. Вся сложность обработки каленого материала заключается в том, чтобы не перегреть, а если сталь хрупкая – то правильно отпустить.

    Это кованый кинжал из углеродистой стали с накладками рукояти из стали 3 и дюралевым больстером. Какая конкретно сталь – не скажу, лезвие мне досталось в подарок.

    Теперь перейдем к рессорам и напильникам. Это материал для тех, кто планирует заняться ковкой. Рессора изначально довольно мягкая, а у напильника сильная закалка только на поверхности и если вы просто сточите его, то рискуете попасть именно на мягкую сердцевину. Сложные и интересные методы ковки стали описывать здесь не буду, а сделаю ссылочку на специалиста, который уже не один десяток лет занимается кузнечным делом. kuznec.ru или наберите в поисковике Виктор Кузнецов кузнец. Первая ссылка – его сайт.

    Добавлю здесь только то, что старую рессору лучше не брать, т.к. на ее поверхности имеется много микротрещин, которые снижают качество и прочность изделия. Рессора плоха для ножей и больше подходит для топоров и мечей.

    Этюд 3. Лигатуры или да поможет нам цветмет

    Легированные и сложнолегированные стали – большая редкость. Но сразу условимся: мы говорим об углеродистых легированных сталях, т.к. качество режущей кромки определяет именно количество углерода, а не чего-либо еще.

    Самое простое и доступное, на мой взгляд – отрезные алмазные диски по камню и бетону. Их основная часть состоит из стали х12 или 100х12 в российской ножевой маркировке. Эта сталь прекрасно закаливается, отжигается и обладает всеми положительными свойствами такой же по углероду обычной стали (У10). Также нет проблем с уковкой по толщине, т.к. диски обычно не толще 3 мм. Обратная сторона медали – наличие слабой токсичности этой стали. Дело в том, что для достижения свойств нержавейки необходимо 13% хрома, в этой стали его меньше. Если после шлифовки нож из этой стали вытереть насухо, то он не заржавеет. Но, с другой стороны, опустите его в горячий чай, и лезвие мигом покроется чем-то невразумительно темным. Это окись хрома, которая, в общем-то, канцероген. Для ножей походных, рабочих, боевых эта сталь идеальна, но на кухне ей делать нечего, и прежде чем отрезать таким ножом себе колбасы стоит подумать. Полубоевой нож из этой стали:

    Гарда – нержавейка, рукоять – дюраль.

    Далее – гаечные ключи. Их не надо перезакаливать, можно просто вытачивать из них и не париться. Из гаечного ключа идеальными получаются метательные ножи. Они обладают убийственной прочностью, неплохо держат острие, плохо ржавеют и обладают своеобразным голубоватым оттенком (добавка ванадия) Ниже – набор метательных ножей, два бодзе-сюрикена из арматуры и два метательных ножа из гаечных ключей. Третий – отпущенный обломок магазинного ножа.

    Оружие делать можно не только из металла. Например, экзотично и необычно смотрится куботан из стекла или дубовый кинжал:

    Оба они незаметны для металлоискателей и не считаются холодным оружием. Дубовый кинжал пробивает толстую джинсу, сам проверял.

    Если сталь неизвестна

    А что делать, если вы нашли лакомый кусочек стали и не знаете, подойдет ли он вам? Есть несколько способов выяснить его качество.

    1. холодная ковка и керн.

    Мягкая галимая черняга легко сминается молотком, а дыры в ней керном пробиваются на ура. Твердые сплавы же мнутся плохо и скорее расколются, чем помнутся, а кернер по ним скользит и трудно бить дырку в одном и том же месте. Ярким показателем твердости является полное сминание острия гвоздя по бетону об сталь.

    Метод искровой пробы помогает установить примерный состав стали и наличие лигатуры. Заключается в следующем: на наждаке (или болгарке) исследуемую сталь обтачивают и смотрят на цвет и характер искр. Ниже таблица данных

    Цвет и характер искр

    Низкоуглеродистая сталь (черняга)

    Непрерывный пучок соломенно-желтых искр, звезд мало.

    Углеродистая

    Светло-желтый пучок со звездами

    Плотный короткий пучок с большим количеством разветвленных звезд

    Расходящийся пучок светло-желтый, много звезд.

    Хромистая

    Плотный пучок темно-красный, много сильноразветвленных звезд.

    Хромовольфрамовая (быстрорез)

    Прерывистый темно-красный пучок с более светлыми каплевидными звездами

    Пружинная кремнистая

    Широкий темно-желтый пучок со светлыми звездами.

    Кобальтовая быстрорежущая

    Широкий темно-желтый пучок без звезд.

    3. Поговорим о нержавейке. Помнится, в одном из комментов здесь кто-то высказывался о непригодности нержавейки для ножа. Как отличить ферритную (с малым количеством углерода) от аустенитной нержавейки? Все просто: ферритная не магнитится. Именно соединение углерода в сплаве усиливает магнитные свойства железа. Поэтому магниты и делают из высокоуглеродистых сплавов (за исключением современных ноу-хау из неодима или алюмомарганцевых).

    4. Еще подскажет личный опыт. Перебрав центнер-другой разного железа, вы научитесь определять «на глаз» то, что подойдет, а с чем лучше и не возиться.

    Бонус для любителей ножей и ножеделов

    Что определяет качество вашего ножа? Опираясь, на какие характеристики можно сказать: этот нож хороший, а тот – хлам? Начнем с того, что разные ножи сделаны для разных целей. Универсального ножа просто не существует.

    Основные характеристики ножа следующие:

    Твердость

    Прочность

    Вязкость

    В зависимости от того, какой из признаков ярче, и определяется назначение ножа.

    Миф: чем тверже нож, тем лучше режет

    Если ваш знакомый на рыбалке перед вами хвастается, что, мол, у него нож 72 единицы по Роквеллу, а ваш всего лишь 54, то совсем не повод расстраиваться и завидовать. Лучше понаблюдать, сколько раз этот знакомый будет точить нож за рыбалку и как быстро он затупится. Очень твердое лезвие имеет неприятное свойство выкрашиваться при сильных нагрузках (кость какая-нибудь). А еще очень твердое лезвие трудно точить. Так что пускай он мучается с заточкой, а мы возьмем помягче, но получше. Да и вязкий нож проще и легче точить, как говорится, провел по голенищу сапога – и он снова бреет.

    Прочность ножа складывается из твердости и вязкости. Эти же две характеристики определяют качество режущей кромки, и в то же время взаимоисключающие. Ножи с высокой твердостью целесообразно делать толще и затачивать под большим углом, иначе кромка выкрошится.

    Нож для более мягких материалов (колбаса, огурцы и т.д.) лучше сделать несколько мягче. Он будет неплохо держать заточку, а угол можно будет сделать меньше, что значительно облегчает жизнь. Твердые тяжелые ножи больше годятся на порубить-построгать, чем в обычной жизни. Если же рубить и строгать мягким ножом, то очень скоро кромка сомнется и будет не слишком весело ее перетачивать.

    Чтобы жало ножа не обламывалось, нужно делать его угол пошире, а спуски под большим углом. На внешний вид это несколько повлияет, но зато прочность повысится.

    Неплохой, но жесткий способ проверки на прочность – изгибание лезвия в тисках на угол в 45 градусов. Если нож хороший, то он вернется в прежнее состояние без деформаций или не даст себя согнуть (для тонких), не сломавшись при этом.

    На качество реза – проверка на весах. Кладем канат на весы и делаем резы до тех пор, пока нажим на нож не превысит определенное значение (например, 15 кг). Считаем резы и сравниваем.

    Постскриптум

    Для оружия, если есть возможность, лучше брать импортную сталь, желательно немецкую или японскую.

    Что может быть лучше, чем

    из перекованного японского старого подшипника от любимой мазды? Наш же металл содержит изрядную долю фосфора и серы, которые вредны для стали. Из-за этого изделие быстрее сгнивает и имеет худшую прочность. А как же иначе? На Урале заводы еще со времен Петра 1 стоят, по тем технологиям гонят. Из нашего же металла лучше брать электросталь (сталь, выплавляемую не углем, из которого сера и идет, а с помощь электролиза). Это все те же подшипники. Для горна стоит нажечь древесного угля, т.к. он чистый, не содержит серы, которая в процессе нагревания может перейти в металл.

    Вот и все, что я хотел рассказать о сталях. Удачи в трудах и творчестве!

    sekach.ru

    Первые изделия - поделки из металла были изготовлены ещё в древности умелыми мастерами. Постепенно художественная ковка превратилась в настоящее произведение искусства и, начиная с 11 века, стала неотъемлемой частью архитектурных сооружений Европы. Сегодня изделия из металла имеют высокую стоимость, но при этом они могут подчеркнуть эксклюзивность экстерьера или интерьера квартиры или загородного дома. Предлагаем вам несколько мастер-классов, которые помогут сделать металлические поделки своими руками.

    Сова из металла

    Материалы:

    • лист бумаги;
    • карандаш;
    • листы картона;
    • ножницы;
    • листовой металл толщиной 1,5 мм;
    • болгарка;
    • зубило;
    • молоток;
    • сварочный аппарат;
    • химический растворитель ржавчины;
    • 2 шайбы и 2 болта под них;
    • прут 6-8 мм.

    1) Карандашом на листе бумаги рисуем сову.

    2) Разбиваем зрительно сову на отдельные элементы и на листы картона переносим их в натуральную величину совы. Вырезаем шаблоны ножницами.

    3) Теперь картонные шаблоны прикладываем к листовому металлу, переносим их и осторожно вырезаем каждую деталь совы болгаркой.

    4) В детали, которая является глазами совы, проделываем отверстия под болты. Их делаем при помощи зубила и молотка.

    5) Теперь на всех деталях совы делаем перья. Для этого берем зубило и делаем насечки.

    6) Лапы легко сделать из прута. Отрезаем от прута нужные для лап кусочки и свариваем их между собой так, чтобы получилась лапка. Точно так же делаем вторую.

    7) Из кусочка листового металла делаем клюв.

    9) Теперь можно соединить детали в одно целое. Для этого аккуратно привариваем каждую из них друг к другу в нужной последовательности с тыльной стороны совы. Затем уже к готовой сове привариваем клюв и лапы.

    10) Теперь при помощи химического растворителя очищаем сову от ржавчины. Следуем указаниям инструкции на растворителе. Если нет подходящего растворителя, сделайте в домашних условия раствор пищевой соды и воды. Он должен быть такой густоты, чтобы легко размазывался по поверхности. Очистите сову при помощи старой зубной щётки, а потом хорошо всё смойте. Все работы с растворителем рекомендуется делать в перчатках.

    11) Когда процесс очистки завершён, покрываем всю сову специальным лаком. Его можно приобрести в специальном магазине.

    Поделка сова из металла готова. Она станет креативным подарком, сделанным с любовью и мастерством, и воспоминания о мастере будет хранить вечно.

    Фигурки из металла оригинально смотрятся в клумбе или в саду на дачном участке, поэтому с помощью нашей пошаговой инструкции вы сможете без труда сделать из металла крысу или какого-то другого зверька.

    Материал:

    • болгарка;
    • дрель со сверлом по металлу;
    • ножницы по металлу;
    • электросварка;
    • круг для зачистки на болгарку;
    • прутья диаметром 4,6,10,12 и 14 мм;
    • лист 2 мм металла;
    • проволока;
    • металлический шарик от подшипника 3 штуки.

    1) Берем два куска металлической трубы (данная крыса имеет высоту 50 сантиметров). Из одного из них делаем голову: вырезаем по всему диаметру одинаковые сегменты и получаем заготовку, как на фото. Затем свариваем и при помощи болгарки с кругом для зачистки, зачищаем эту деталь. Делаем туловище и тоже зачищаем подобным образом. Учитывайте пропорции: голова больше туловища. Привариваем голову к туловищу.

    2) На лист 2 мм металла переносим эскизы ушей и лап крысы и вырезаем. Заготовки для лап сворачиваем в воронку. Обвариваем их и зачищаем швы. Затем электросваркой привариваем каждую лапу к туловищу и снова зачищаем швы. Уши привариваем к голове и не забываем тоже зачистить швы.

    3) Теперь из прутиков делаем лапки-кисти крысы. Для верхних лап прут 4 мм приваривается к 10 мм, а для нижних 6 мм лап и приваривается к 12 мм. Вставляем в отверстия воронок и обвариваем сваркой.

    4) Хвост изготавливаем из прута 14 миллиметров и привариваем к туловищу.

    5) Перейдем к мордочке крысы. Сначала проделаем два отверстия в голове для глаз. Они должны быть меньше, чем шарики от подшипников. Теперь утопим эти шарики в отверстиях и приварим аккуратно и тонко. Привариваем электросваркой оставшийся шарик на место носа. Просверлим отверстия для усов из проволоки и вставим её.

    7) Затем по всей крысе делаем продольные сварочные швы близко друг к другу. Благодаря этому получится имитация шерсти. Теперь снова зачищаем всю поделку при помощи болгарки с нужным диском. Это нужно для того, чтобы избавить изделие от окалин, шлака и придать блеск.

    8) В заключение работ наносим на крысу из металла специальный лак можно бесцветный, а можно с каким-то эффектом. Это на ваше усмотрение. Крыса на фото покрыта бесцветным лаком с сатиновым эффектом.

    Теперь осталось придумать, куда её поставить или кому преподнести такой замечательный подарок, сделанный своими руками.

    Роза – это уникальный цветок, красоту которого хотелось бы сохранить как можно дольше. Роза из металла будет радовать вас долгие годы и украсит классический интерьер спальни.

    Материалы и инструменты:

    • тисы;
    • листовой металл 0,5 мм;
    • ножницы по металлу;
    • стальная проволока 6 мм;
    • точильный камень;
    • плоскогубцы;
    • молоток;
    • болгарка;
    • краска по металлу;
    • сварочный аппарат.
    Мастер-класс металлическая роза

    1) Во время работ соблюдайте технику безопасности, пользуйтесь перчатками и маской для сварки.

    2) Вырезаем из листового металла специальными ножницами лепестки для бутона и пару листьев для розы. Лепестки вырезаем в такой последовательности: от меньшего к большему, начиная с 15 мм и заканчивая 80 мм. Вырезать нужно приблизительно лепестков тридцать, тогда бутон будет плотным и набитым.

    3) Затем края каждого лепестка сглаживаем, используя точильный камень.

    4) Из оставшихся обрезков листового металла вырезаем треугольники - они станут шипами розы. Размер их не должен быть меньше 10 мм.

    5) Из стальной проволоки делаем заготовку стебля. Наша задача избавиться от его ровного состояния. Для этого можем использовать молоток, чтобы немного его изогнуть и он стал похож на настоящий стебель розы.

    6) Создаем бутон. Первые два самых маленьких лепестка нужно зажать в тисах и согнуть пополам. Далее восемь лепестков начинаем формировать по дуге относительно центра бутона, но обязательно прихватываем каждую деталь сваркой и потом зачищаем.

    7) Все последующие лепестки формирует тоже по дуге, но отгибая верх лепестка. Эту процедуру делаем молотком. И точно так же, как и предыдущие лепестки привариваем и снова зачищаем.

    8) Теперь к уже заготовленному стеблю привариваем шипы. Затем зачищаем их болгаркой.

    9) Листья розы. Нужно зажать и разжать лист в тисах, чтобы получилась прожилка. Затем загибаем края при помощи плоскогубцев. А теперь сваркой приделываем листья к стеблю и зачищаем места швов.

    10) Привариваем бутон розы к её стеблю, аккуратно зачищаем в местах соединения и покрываем всю розу краской по металлу.

    Прекрасный цветок, который сочетает в себе нежность красоты и жесткость металла готов. Оригинальный и столь кропотливый подарок будет радовать женский взгляд долгие годы.

    Поделки из металла: Панно - рыбка

    Панно – это декоративная композиция, которая служит для красоты и уюта в доме. Оно может представлять собой резную или керамическую композицию, барельефную или лепнину. В архитектуре зданий часто встречается панно из плиток разного цвета или же в технике муралями. Предлагаем сделать поделки из металла: настенное панно из металлического каркаса своими руками.

    Материалы

    • толстая проволока;
    • тонкая проволока;
    • бисер, много бисера;
    • десяток бусин;
    • лист бумаги;
    • простой карандаш;
    • ножницы, которые смогут резать проволоку.

    1) Самое первое, что нужно сделать - это нарисовать эскиз рыбки, которая будет занимать центральное место в панно.

    2) По эскизу начинаем делать каркас рыбы из толстой проволоки. При этом делаем закругления, как на фото. В пункте 5 вы поймёте для чего они.

    3) Из этой же проволоки делаем перемычки, которые увеличат жёсткость конструкции.

    4) Тонкая проволока нужна для фиксации каркаса.

    5) Теперь начинаем заполнять рыбу бисером и бусинами. Для этого крепим тонкую проволоку к закруглениям на каркасе и начинаем нанизывать на неё бисер. Так заплетаем все части рыбы бисером, при этом проволоку с бисером закрепляйте. Чтобы изделие выглядело эстетично, делайте это на задней стороне рыбки. Бусины помогут подчеркнуть большую чешую рыбы, а одна бусина уйдет на изготовления глаза. Цвет будущей поделки зависит от выбранного бисера, поэтому фантазируйте, не бойтесь.

    Готовую рыбку можно повесить на стену в детской или прихожей. Она станет не только украшением интерьера, но и приятным подарком для любителя рыбалки. Рекомендуем сделать несколько рыбок, чтобы на стене можно было создать целую морскую композицию.

    Металлические поделки родители могут делать всей семьёй, так как нужно соблюдать технику безопасности, работая со сварочным аппаратом. Если у вас не особых навыков по работе с металлом, можете сделать поделку из проволоки или консервной банки, которая тоже будет выглядеть эксклюзивно. На этом наша статья о поделках из металла своими руками заканчивается, больше поделок смотрите в разделе сайта.

    www.svoimi-rukamy.com

    Какой тип стали лучший для меча?

    Это достаточно распространенный вопрос среди новичков, "лучший тип" зависит от типа меча и от того, в каких целях его собираются использовать...

    Нужно упомянуть, что присутствует ряд более важных факторов, чем сталь, из которой сделан меч (например, качество ковки важнее чем тип стали, из которой сделан меч - меч из хорошо закаленного куска самой дешевой нелегированной углеродистой стали гораздо лучше, чем плохо закаленный меч из стали L6.

    Но давайте не будем все усложнять!

    Так-что вместо этого давайте спросим "какие типы стали в основном используются для ковки мечей - и какие у них сильные и слабые стороны"(конечно, когда они закалены как надо!)?

    Нержавеющая сталь

    Раньше почти каждый меч был сделан из нержавеющей стали. Теперь она используется только для дешевых декоративных мечей - и не просто так!

    Мечи из нержавеющей стали(или любые другие мечи в длину свыше 12") считаются слишком хрупкими для применения и ломаются очень легко (как было продемонстрировано на печально известном видео home shopping video ниже.

    Как объяснить это с технической точки зрения - нержавеющая сталь "не ржавеет" из-за того что в ней содержится высокий процент хрома (более 11%), и когда клинок достигает в длину 12"(меч), связь между хромом и сталью ослабевает. Так-что место мечей из нержавеющей стали - на стенке.

    Примечание: Есть исключения из этого правила. Мечи из нержавеющей стали могут быть использованы для практики бесконтактных форм.

    нелегированная углеродистая сталь

    Для хорошего меча (естественно, закаленного как надо) нелегированная углеродистая сталь подходит лучше всего! Но что это значит?

    Когда углеродистая сталь используется для ковки мечей, которая обозначается несколькими цифрами: первые две - 10, потом идут цифры от 1 до 99 (каждая цифра обозначает содержание 0.1% углерода в стали.

    Чаще всего для ковки мечей используются 3 типа углеродистой стали: 1045, 1060 и 1095. Эксперты утверждают, что идеальное содержание углерода в стали, пригодной для хорошего и прочного меча - от 0.5 до 0.7 %, однако сталь 1045,самая недорогая, также используется.

    Углеродистая сталь 1045

    Мечи из этого типа стали сделать легко и недорого (как при ручной ковке, так и при прессинге и на станке). Эта сталь может быть закалена, и требует минимум затрат стали.

    Когда меч такой стали хорошо закален, он достаточно крепок. И если вы найдете недорогой меч, который помечен как "сделанный из высшей углеродистой стали", это скорее всего сталь 1045, и меч, сделанный на станке.

    Углеродистая сталь 1060

    Мечи из этой стали - это идеальной баланс между прочностью и гибкостью. Они так-же известны своей прочностью. Мечи COLD STEEL сделанны из стали 1060.

    Мечи из 1060 стали очень популярны несмотря на то, что их сложнее ковать.

    VIDEO: Cold Steel Demo

    Пример того на сколько прочны мечи из 1060 стали.

    1095 углеродистая сталь

    Эта сталь очень жесткая, и если мечи из 1095 стали закалены не должным образом, могут возникнуть проблемы при контакте с ещё более жесткой поверхностью (например например при попадании по деревянному стенду).

    Итак, сталь с высоким содержанием углерода позволяет создавать особенно острые мечи. Но в этом случае острота может стоить мечу прочности.

    Конечно, это не значит, что мечи из 1095 стали - хрупкие! Но определенные преимущества в прочности у мечей, сделанных из стали с низким содержанием углерода, есть.

    Мечи из 1095 стали имеют репутацию "относительно" хрупких, и ключевое слово здесь - относительно. Все зависит от того, для чего вам нужен меч.

    Пружинная сталь

    Существуют два нужных нам типа пружинной стали - 5160 и 9260.Так-же как и в углеродистой стали, в них содержится 0.60% углерода (идеальный баланс между прочностью и гибкостью). Когда такая сталь закалена как надо, после определенного воздействии (например, искривления) она может возвращаться в свою исходную форму.

    5160 пружинная сталь

    В ней содержится 7% хрома - не достаточно, чтобы получить нержавеющую сталь (где нужно минимум 13%). Выкованный из такой стали, получается очень прочным.

    5160 сталь так-же использовалась знаменитым Nepalese Khurki. Он создал невероятно острый и прочный меч, с помощью которого одним ударом отрубили голову буйволу.

    Опять же, все зависит от закалки. Плохо закаленный меч из стали отличного качества может оказаться бесполезным.

    VIDEO: Flex Test

    На видео меч возвращается в исходную форму, будучи изогнутым на 90 градусов!

    Мечи из 9260 стали почти в два раза прочнее мечей из 5160 стали (как пишет efunda.com)

    Тем не менее такие мечи так-же могут ломаться.

    VIDEO: 9260 Sword Breaking

    На видео показано, как меч ломается при плохом ударе о толстую кость (толще, чем любая человеческая кость).

    Мораль - любой меч может сломаться...

    Инструментальная сталь

    В последнее время эта сталь достаточно популярна - из нее получаются прочные острые мечи. На рынке существуют несколько типов данной стали. Мы поговорим о двух из них: T10 и L6 Bainite

    Инструментальная сталь T10

    В этой стали из вольфрамового сплава содержится высокий процент углерода (1%). Обычно это сталь называют "высокоскоростной".

    T10 - очень твердая сталь (HRC60), и мечи, правильно закаленные, очень прочны. Благодаря вольфраму мечи из Т10 устойчивее к царапинам, чем другие мечи с таким-же содержанием углерода. Они так-же сравнительно тяжелее.

    VIDEO: Destructive Testing of a T10 Tool Steel Sword

    На видео показано, что мечи из Т10 очень прочны.

    Это так-же инструментальная сталь, (используется для изготавления пил для разрезания гипсовой повязки) где L - низколегированный сплав.

    Когда закалены как следует, такие мечи считаются самыми крепкими. Такая репутация появилась у мечей из L6 благодаря работе Howard Clark из Bugei Trading company, который в поздних 90х производил мечи ручной работы из L6.

    Такой меч трудно закалить (из-за жесткости стали), и так-же нужно постоянно поддерживать в хорошем состоянии, не давая ему заржаветь. Мечи из L6 - самые дорогие (от 1000$ США)

    Дамаская сталь

    Катана из дамаской стали

    у многих людей возникает вопрос о дамаской стали, и многие считают её лучшей для мечей.

    Но даже зная это, у многих людей создается впечатление, что такая сталь прочнее других, и лезвия мечей, сделанные из такой стали, острее.

    Это не правда.

    Что касается японских мечей, - исторически такая технология применялась к японской железной руде (не очень хорошего качества) чтобы улучшить ее свойства. С качеством руды на сегодняшний день такие меры не обязательны.

    swordmaster.ru

    10 невозможных вещей, которые стали возможными благодаря науке

    Наука постоянно демонстрирует нам интересные вещи. По мере того как мы движемся в светлое будущее, научные достижения начинают граничить с магией. Наука постоянно пытается сделать невозможное возможным и, безусловно, добивается постоянных успехов.

    Телепортация

    Долгое время человечество пребывало в поиске способа телепортации, но всегда оказывалось, что мы требуем от науки слишком многого. И тогда наука рванула вперед и показала, что телепортация возможна. Ранее мы уже обращались к феномену квантовой запутанности. Исследователи из Технологического университета Делфта смогли телепортировать информацию через комнату и доказать квантовую теорию запутанности на практике.

    Ученые изолировали пару электронов в двух алмазах на расстоянии друг от друга. Согласно теории квантовой запутанности, изменение спина в одном должно симметрично повториться в другом алмазе. Именно это и произошло - изменение поведения одного электрона повлияло на другое на расстоянии в 10 метров. Эксперимент удается в 100% случаев. В настоящее время ученые работают над увеличением расстояния, и если теория будет верна, все получится. Если эксперимент по передаче информации на большое расстояние будет успешным, очень скоро мы сможем надежно телепортировать информацию с помощью квантовых частиц без каких-либо потерь времени и данных.

    Связать свет в узлы

    Исходя из всего, что нам известно, свет должен двигаться по прямой линии. Однако нашлись в нашем мире умельцы, которые захотели это исправить. Ученые из университетов Глазго, Бристоля и Саутгемптона первыми связали свет в узлы, воплотив в реальность абстрактное математическое понятие. Узлы были созданы с использованием голограмм, которые направили поток света вокруг областей тьмы с использованием теории узлов, ветви математики, которая занимается узлами в реальной жизни.

    Один из ведущих ученых объясняет, что свет - это как река, которая может течь прямо и закручиваться в воронки. Вы также можете связать свой собственный световой луч в узел при помощи голограммы. Этот эксперимент наглядно показал, что будущее оптики может быть совсем не скучным.

    Объекты, которые развиваются самостоятельно

    Понадобится еще немного времени, прежде чем каждый сможет использовать технологии 3D-печати, но наука уже пошла дальше, к 4D-печати. Хотя это может показаться слишком сложным для большинства из нас, четвертое измерение - это время, а значит, следующее поколение принтеров не только сможет напечатать что угодно, но и сами напечатанные объекты получат возможность самостоятельно изменяться и адаптироваться. Ученые уже представили 4D-принтер, способный печатать материалы, которые могут складываться самостоятельно в простые формы вроде кубов со временем. Пока звучит не так классно, но пройдет время, и эта технология навсегда изменит науку.

    Очень скоро мы сможем производить машины, которые смогут добираться до труднодоступных зон - глубоких колодцев, например - для проведения технического обслуживания. Медицинские операции будут осуществляться независимо машинами, сделанными из таких материалов. В основном они будут печататься на принтерах, а не на заводах. Водопроводные трубы будут сами определять, что делать во время переполнения. Поскольку 4D-печать, по существу, позволит сделать материалы, которые смогут преобразить себя во что угодно, возможности безграничны. Можно с уверенностью сказать, что потребуется определенное время, прежде чем 4D-печать займется крупными объектами, но глядя на темпы развития 3D-печати, это будет довольно скоро.

    Черные дыры в лаборатории

    Долгое время черные дыры были одним из основных продуктов популярной фантастики, и никто не мог сделать их искусственным путем. Пока ученые из Юго-Восточного университета Нанкина в Китае не решили сымитировать черную дыру в лаборатории. Они создали схему с определенным материалом, который используется для изменения способа прохождения электромагнитных волн. Похожий материал используется для достижения невидимости, но, вместо того чтобы отражать видимый свет, их установка работает с микроволнами. Такие метаматериалы поглощают электромагнитное излучение и преобразуют его в тепло аналогично черной дыре.

    У такого эксперимента есть ряд полезных применений, в частности, в производстве энергии. В частности, наука пытается выяснить, как повторить успех черной дыры, но с использованием света, поскольку длина волны света намного меньше, чем у микроволн. Тем не менее это первый случай имитации черной дыры в контролируемых условиях. Не так давно и другие ученые продемонстрировали излучение Хокинга на примере звуковой черной дыры в лабораторных условиях.

    Остановить свет

    Эйнштейн первым понял, что ничто не может двигаться быстрее света, но он ничего не говорил о том, чтобы можно было замедлить свет. В эксперименте, проведенном в Гарвардском университете, ученые смогли замедлить свет до 20 км/ч. Более того, они пошли дальше и решили совсем остановить свет. В основу эксперимента лег сверхохлажденный материал, известный как конденсат Бозе - Эйнштейна. Этот конденсат образуется при температуре всего на несколько миллиардных долей градуса выше абсолютного нуля, поэтому у атомов крайне мало энергии, чтобы двигаться. Имейте в виду, что абсолютный ноль - это абстрактное понятие, которое в принципе не может быть достигнуто.

    Хотя перед этим ученые замедляли свет только до 61 км/ч, это был первый раз, когда свет был доведен до полной остановки. Частица света даже оставила голограмму, когда остановилась, превратившись в стабильную материю вместо бегущей волны, которой является по сути. И поскольку в такой форме свет относительно стабилен, его в буквальном смысле можно и на полку положить. Более того, когда люди доказали, что свет можно остановить, исследователи даже работают над тем, чтобы заставить его двигаться в обратном направлении.

    Производство антивещества в лаборатории

    Антивещество - это, возможно, ответ на все наши будущие потребности в энергии. Тем не менее, несмотря на все усилия, ученые так и не смогли найти обилие антивещества во Вселенной, которое можно было бы сравнить с количеством вещества, и это остается одной из крупнейших загадок современной науки. Однако, хотя эту загадку и не получится разрешить в ближайшее время, ученые научились создавать и удерживать антивещество в лаборатории. Группа ученых разных стран, известная как ALPHA, обнаружила способ сохранения антивещества на долю секунды.

    Даже при том, что производство антивещества было доступно уже лет десять, удерживание антивещества всегда казалось невозможным, поскольку оно аннигилирует при столкновении со всем, что известно нам под видом вещества. Ученые из CERN обнаружили новый способ сохранения антивещества на длительный период времени в мощном магнитном поле, но проблема в том, что это поле влияет на измерения и не позволяет нам изучить антивещество как положено. Возможно, в будущем именно антивещество будет нашим основным источником энергии, когда все природные возможности извлечения иссякнут.

    Телепатия

    Мы часто писали о том, как наука находит способы подключиться к мозгу человека, но пока на примере крыс - и удаленно двигать ее хвостом. Хотя это серьезное достижение, на этом ученые не останавливаются. В эксперименте, проведенном ученым из Университета Дьюка, две крысы смогли телепатически общаться друг с другом за тысячи километров, что в теории может проложить путь к подобной технологии для людей.

    Крысы были соединены с помощью имплантатов мозга. Одной из них нужно было выбрать один из двух рычагов, в зависимости от того, какого цвета горит лампа. Другая крыса не могла видеть лампу, но нажимала на нужный рычаг, получая электрические импульсы от мозга другой крысы. Крыса не знала, что воздействует на мозг другой крысы, просто получала свое вознаграждение.

    Превышение скорости света

    Этот, казалось бы, хорошо известный факт - что скорость света в нашей Вселенной максимальна - попытались опровергнуть ученые из научно-исследовательского института NEC в Принстоне. Они пропустили лазерный луч через камеру, заполненную специальным газом, и засекли время. Как выяснилось, луч превысил скорость света в 300 раз. Он вышел из камеры раньше, чем вошел в него, что, по-видимому, нарушает закон причины и следствия. Но ученые объяснили, что этот закон технически не нарушался, поскольку луч будущего никак не повлиял на события в прошлом. Последствия эксперимента все еще широко обсуждаются, и нет никаких уверенных доказательств подлинности его выводов - только прецедент.

    Сокрытие вещей от самого времени

    Одно дело - сделать вещь невидимой и скрыть ее от человеческого взгляда, но совсем другое - спрятать вещь от самого времени. Исследователи из Корнелльского университета создали устройство, которое разделяет световой луч на два компонента, транспортирует его через среду и соединяет на другом конце при помощи временной линзы, не записывая, что произошло в этот период. Линза замедляет более быструю часть луча и ускоряет более медленную, создавая временной вакуум, который скрывает события во время передачи.

    Проще говоря, это устройство пропускает все, что происходило на пути светового луча, и прячет его от самого времени. В настоящее время такой фокус можно провернуть только с очень коротким промежутком времени, но ничто не запрещает увеличить его в дальнейшем. Маскировка от времени может быть полезной в самых разных сферах, в частности, безопасной передачи данных.

    Объект делает две вещи одновременно

    У нас было множество теорий о том, как частицам на квантовом уровне удается делать невозможное, пока ученые из Калифорнийского университета в Санта-Барбаре не построили квантовую машину, которая смогла показать, что происходит на самом деле. Ученые охладили крошечный кусочек металла до самой низкой возможной температуры. Затем включили этот кусочек в квантовую цепь и заставили ее дрожать подобно струне, как обнаружили странное: она двигалась и не двигалась одновременно, как и предполагала теория.

    Представьте, что человек отдыхает дома и занимается альпинизмом в одночасье. В эксперименте, в принципе, так и было, но в значительно меньших масштабах. Открытие ученых имеет огромные последствия для науки, поскольку квантовая механика вполне может реализовать наши самые смелые мечты. Журнал Science назвал это открытие самым важным научным достижением 2010 года. Некоторые люди даже сочли это доказательством существования множественных вселенных. Возможно, в будущем находиться в двух местах одновременно станет вполне заурядным делом. Тогда вы, конечно, успеете все.

    По материалам listverse.com

    hi-news.ru

    Обработка стали при изготовлении холодного оружия

    Стали и их обработка

    Большинство видов холодного оружия включают в себя стальные части. От качества металла зависит надежность вашего оружия, его долговечность и живучесть. В этой статье я постараюсь отразить все наиболее эффективные и простые виды термического и механического упрочнения металла.

    Итак, начнем с того, что металл делится на цветной и черный (стали и всякие другие сплавы на основе цветных металлов). Из цветных сплавов подробнее остановимся на меди. Основной способ упрочнения меди (и собственно ее обработки) – холодная ковка. От механических воздействий зерно металла раскрашивается и измельчается, что придает прочность и относительную твердость. В предыдущей статье (о медном холодном оружии) есть фотка медного кинжала. До ковки брусок, из которого он сделан, можно было довольно легко согнуть руками. После ковки это сделать стало почти невозможно, по крайней мере, руками. Но здесь есть и другая сторона: у латуней эффект наклепа (а именно так называется то о чем я пишу) выражен сильнее и при чрезмерной деформации поковка растрескивается. Поэтому пруток не стоит расковывать, слишком сильно. Норма – в 2-3 раза по толщине. Совсем нельзя ковать слишком крутые изгибы и тому подобное, разорвет 100%.

    Есть еще бронза, но она не куется (хрупкая и крошится), да и распространены больше латуни чем бронзы (я с бронзой еще не работал, потому не буду писать того чего не знаю). Так же в некоторых книгах, в основном советских, пишут о закалке дюралюминия. Этим я так же не занимался, поэтому так же не буду писать.

    Перейдем к черным сплавам.

    Черные сплавы бывают сталями и чугунами. Чугун вряд ли кого заинтересует, т.к. он хрупкий (это я думаю, знают все). Стали делятся на конструкционные, углеродистые и легированные. Начнем с конструкционных.

    Эта сталь представлена в основном полосами, уголками, листами, арматурой, трубами и прочий прокат. Содержат примерно 0.3-0.7% углерода. Из этой стали удобно делать всякий хард-кор: мечи, боевые секиры, всякие кинжалы и прочее средневековое оружие. По идее оно не должно подпадать под статью, т.к. сделано из слишком мягкого материала, но возможно я ошибаюсь. Если кто знает точно – пишите, буду благодарен. Эту сталь почти бесполезно закаливать, т.к. она не сильно повышает свою твердость (это, пожалуй, не относится к качественным сталям, например арматуре и всему что отличается высокой механической прочностью). Их обычно куют на горячую, но после завершения горячей ковки стоит, как следует отбить холодной ковкой. Вообще эти стали нужно стараться по возможности ковать без нагрева (для достижения относительно высокой прочности).

    Но здесь стоит оговориться о том что у качественных сталей эффект наклепа выражен еще сильнее. У меня на глазах разорвало арматурину после двух часов холодной ковки. Расковал я ее лишь в два раза, т.е. толщина уменьшилась в два раза. Так что важно не переборщить, иначе трещины и все, кирдык вашему мечу-кладенцу. Теперь перейдем к углеродистым сталям (0.7-2.1% углерода) и собственно термообработке. Ниже я помещу полную диаграмму фазовых состояний железо-углеродных сплавов (все же помнят, что сталь – сплав железа с углеродом?), с первого взгляда на которую мало кому что-то будет понятно.

    По горизонтальной шкале – содержание углерода по массе в процентах, по вертикальной – температура в Цельсиях.

    Итак, здесь мы видим жуткие и непонятные слова типа «аустенит», «перлит» и т.д. Это названия видов структуры стали, от которых собственно и зависят ее свойства. В молекулярные и научные подробности вдаваться не стоит, тем более что я сам пока в этом не сильно разобрался. Для сталей нам вся диаграмма в принципе не нужна, а нужен лишь участок от 0% до 2.1%. дальше идут чугуны, которые нас сейчас не интересуют. Для наглядности я перерисовал «стальной» участок диаграммы, выделив цветом то, что нужно:

    Кажется, я неверно указал верхнюю границу температур, она не достигает 1200, а останавливается на 1100. прошу прощения, мой косяк.

    Собственно термообработки выделяют четыре вида:

    Нормализацию

    Закалку

    Что дает каждый из них?

    ОТЖИГ – довольно сильный нагрев, выше линии GSK на общей диаграмме на 50-60 град., соответствует розово-зеленой жирной линии на рисунке. Температура подбирается из графика по количеству углерода (если неизвестно, то хотя бы из соображений вида стали: конструкционная до 0,7%, в том числе и качественная; остальное – углеродка). Остывание происходит медленное, в идеале вместе с печью. На выходе получаем очень мягкую сталь с выровненной и ненапряженной структурой. Для чего это нужно? Отжиг снимает химическую неоднородность металла (т.е. в одной части, допустим, углерода, больше, чем в другой), размягчает сталь и облегчает механическую обработку детали. Отожженную деталь удобно чеканить, ставить на ней клеймо и тому подобное.

    НОРМАЛИЗАЦИЯ – похожа на отжиг. Снимает внутренние напряжения, выравнивает структуру. После ковки (и горячей тоже) в металле образуются напряжения, которые при закалке могут просто сломать ваше изделие, придать ему стеклянную хрупкость. Нормализация применяется обычно всегда перед закалкой и тогда, когда нужно снять внутренние напряжения. После нормализации сталь несколько тверже, чем после отжига. Проводят нормализацию нагревом выше линии GSE на 50-60 град. (общая диаграмма) или по сиреневой линии на рисунке (там, где несколько цветов – значит, температурные режимы совпадают для этих видов термообработки). Остывание происходит на воздухе (вытащили – дождались пока само остынет).

    ЗАКАЛКА – один из самых сложных видов термообработки. Придает металлу твердость и хрупкость. Вот тут-то собака и зарыта. Вам, конечно, хочется, чтобы нож, к примеру, был твердым и не тупился, но совсем не хочется, чтобы он сломался. А вот фигушки…выполняется закалка по тому же режиму, что и отжиг с той лишь разницей, что остужать надо быстро. Производить это следует в масле или концентрированном рассоле. Вода не желательна, т.к. остывание происходит слишком быстро, и сталь получается чрезмерно хрупкой. Рискуете сломать заготовку при малейшей нагрузке. Закаливать следует после трехкратной нормализации.

    ОТПУСК – простой способ снизить хрупкость стали. Его удобно производить на газовой плите, предварительно зачистив поверхность от окислов. Отпуск производится нагревом от 120 град. до 600 град. по Цельсию. Отпуск бывает низкий, средний и высокий.

    НИЗКИЙ. Нагрев до 250 град. соответствует коричнево-желтому цвету окислов на поверхности металла. Незначительно снижает твердость и хрупкость.

    СРЕДНИЙ. Нагрев от 250 до 450 град. Верхняя граница соответствует серому цвету окислов. Снижает твердость, но и хрупкость так же. Сталь становится пружинистой и упругой.

    ВЫСОКИЙ. Нагрев до 600 град. верхняя граница – темно-красное свечение.

    Придает высокую ударную вязкость и упругость. Примерно такую же твердость вы получаете при холодной ковке, как при таком отпуске.

    Отпуск можно (и нужно я считаю) проводить только там где надо. Т.е. не нужно отпускать все лезвие ножа, нагревать только обух и хвост, причем сила нагрева должна по идее увеличиваться там, где будут механические нагрузки (удар, изгиб и т.д.), и уменьшаться там, где нужна высокая твердость (кромка и спуски лезвия). Отслеживать нагрев можно по цветам окислов, о чем я расскажу ниже.

    Для определения температуры сталей существует несколько способов.

    Самый простой – магнитом. Когда нагретый кусок железа перестает магнититься, значит, он достиг температуры 723 градусов Цельсия и значит, в нем вполне могут происходить всякие изменения. Но для нормализации этот способ не годится. Ниже я нарисую таблицу по определению температуры по цвету окислов и каления (примерно, т.к. восприятие цветов – штука индивидуальная).

    Это таблица определения температуры по цвету каления. Теперь нарисуем таблицу цветов окислов:

    В определении по цвету видна «яма» от 330 до 550 град, но в принципе в оружейном деле это не так уж и важно. Если вас это не устраивает, то тут поможет только печь с электротермометром.

    Следует учитывать, что вся выше приведенная информация по термообработке годна лишь для углеродистых сталей. Для легированных и уж тем более сложнолегированных сталей совсем иные режимы (за редким исключением для всех)

    ЛЕГИРОВАННЫЕ стали. Это разнообразные подшипники, рессоры, вся нержавейка, клапаны (так горячо любимые русским народом), гаечные ключи, быстрорежущие стали. Здесь мне о них печатать очень и очень лениво, и я только сделаю ссылочку на замечательный сайт knifehelp.com (или.net , точно не помню). Там в разделе сталей вы найдете основные ножевые стали и их характеристики, а так же много другой приятной и нужной информации.

    Вот, в общем-то, и все по термообработке сталей. Мои знания на этом исчерпаны. Всем оружейникам – удачи!

    Окрас металла

    Закалка клинка

    Химическая окраска металлических изделий

    Как сделать солнечную печь самостоятельно

    Как сделать ветровую электростанцию в домашних условиях

Рассказать друзьям