Как из понижающего преобразователя сделать повышающий. Как работают импульсные преобразователи напряжения (27 схем)

💖 Нравится? Поделись с друзьями ссылкой

Наверное многие помнят мою эпопею с самодельным лабораторным блоком питания.
Но меня неоднократно спрашивали что нибудь похожее, только попроще и подешевле.
В этом обзоре я решил показать альтернативный вариант простого регулируемого блока питания.
Заходите, надеюсь, что будет интересно.

Я долго откладывал этот обзор, то времени не было, что настроения, но вот дошли у меня руки и до него.
Данный блок питания имеет несколько другие характеристики чем .
Основой блока питания будет плата DC-DC понижающего преобразователя с цифровым управлением.
Но всему свое время, а сейчас собственно немного стандартных фотографий.
Пришла платка в небольшой коробочке, ненамного больше пачки сигарет.

Внутри, в двух пакетиках (пупырчатом и антистатическом) была собственно героиня данного обзора, плата преобразователя.

Плата имеет довольно простую конструкцию, силовая часть и небольшая плата с процессором (данная плата похожа на плату из другого, менее мощного преобразователя), кнопками управления и индикатором.

Характеристики данной платы
Входное напряжение - 6-32 Вольта
Выходное напряжение - 0-30 Вольт
Выходной ток - 0-8 Ампер
Минимальная дискретность установки\отображения напряжения - 0.01 Вольта
Минимальная дискретность установки\отображения тока - 0.001 Ампера
Так же данная плата умеет измерять емкость, которая отдана в нагрузку и мощность.
Частота преобразования, указанная в инструкции - 150КГц, по даташиту контроллера - 300КГц, измеренная - около 270КГц, что заметно ближе к параметру указанному в даташите.

На основной плате размещены силовые элементы, ШИМ контроллер, силовой диод и дроссель, конденсаторы фильтра (470мкФ х 50 Вольт), ШИМ контроллер питания логики и операционных усилителей, операционные усилители, токовый шунт, а так же входные и выходные клеммники.

Сзади ничего практически и нет, только несколько силовых дорожек.

На дополнительной плате установлен процессор, микросхемы логики, стабилизатор 3.3 Вольта для питания платы, индикатор и кнопки управления.
Процессор -
Логика - 2 штуки
Стабилизатор питания -

На силовой плате установлены операционные усилители 2 штуки (такие же операционники стоит и в ZXY60xx)
ШИМ контроллер питания самой платы adj

В качестве силового ШИМ контроллера выступает микросхема . По даташиту это 12 Ампер ШИМ контроллер, так что здесь он работает не в полную силу, что не может не радовать. Однако стоит учесть, что входное напряжение лучше не превышать, это так же может быть опасно.
В описании на плату указано максимальное входное напряжение 32 Вольта, предельное для контроллера - 35 Вольт.
В более мощных преобразователях применяют слаботочный контроллер, управляющий мощным полевым транзистором, здесь все это делает один мощный ШИМ контроллер.
Приношу извинения за фотографии, никак не получалось добиться хорошего качества.

В инструкции, найденной мною в интернете, описан вход в сервисный режим, где можно изменить некоторые параметры. Для входа в сервисный режим надо подать питания при нажатой кнопке ОК, на экране будут последовательно переключаться цифры 0-2, что бы переключить настройку, надо отпустить кнопку во время отображения соответствующей цифры.
0 - Включение автоматической подачи напряжения на выход при подаче питания на плату.
1 - Включение расширенного режима, отображающего не только ток и напряжение, а и емкость, отданную в нагрузку и выходную мощность.
2 - Автоматический перебор отображения измерений на экране или ручной.

Так же в инструкции есть и пример запоминания настроек, так как у платы можно настроить лимит по установке тока и напряжения и есть память установок, но в эти дебри я уже не лез.
Так же я не трогал контактны для разъема UART, находящиеся на плате, так как даже если там что-то и есть, то программы для этой платы я все равно не нашел.

Резюме.
Плюсы .
1. Довольно богатые возможности - установка и измерение тока и напряжения, измерение емкости и мощности, а так же наличие режима автоматической подачи напряжения на выход.
2. Диапазон выходного напряжения и тока вполне достаточен для большинства любительских применений.
3. Качество изготовления не то что бы хорошее, но без явных огрехов.
4. Компоненты установлены с запасом, ШИМ на 12 Ампер при 8 заявленных, конденсаторы на 50 Вольт по входу и выходу, при заявленных 32 Вольта.

Минусы
1. Очень неудобно сделан экран, он может отображать только 1 параметр, например -
0.000 - Ток
00.00 - Напряжение
Р00.0 - Мощность
С00.0 - Емкость.
В случае последних двух параметров точка плавающая.
2. Исходя из первого пункта, довольно неудобное управление, валкодер бы очень не помешал.

Мое мнение.
Вполне достойная плата для построения простенького регулируемого блока питания, но блок питания лучше и проще использовать какой нибудь готовый.
Обзор понравился +123 +268

Простые схемы импульсных преобразователей постоянного напряжения для питания радиолюбительских устройств

Доброго дня уважаемые радиолюбители!
Сегодня на сайте “ “ мы рассмотрим несколько схем несложных, даже можно сказать – простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного.
Импульсные преобразователи подразделяются на группы:
– понижающие, повышающие, инвертирующие;
– стабилизированные, нестабилизированные;
– гальванически изолированные, неизолированные;
– с узким и широким диапазоном входных напряжений.
Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы – они проще в сборке и не капризны при настройке.

Первая схема.
Нестабилизированный транзисторный преобразователь:
Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка – 2х10 витков, вторичная обмотка – 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Вторая схема.

Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.

Третья схема.
:

Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Четвертая схема.
Преобразователь на специализированной микросхеме:
Преобразователь стабилизирующего типа на специализированной микросхеме фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент – дроссель L1.

Пятая схема.
Нестабилизированный двухступенчатый умножитель напряжения:

Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Шестая схема.
Импульсный повышающий стабилизатор на микросхеме фирмы MAXIM:
Типовая схема включения импульсного повышающего стабилизатора на микросхеме фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД – 94%, ток нагрузки – до 200 мА.

Седьмая схема.
Два напряжения от одного источника питания :
Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 – накопители энергии.

Восьмая схема.
Импульсный повышающий стабилизатор на микросхеме-2 фирмы MAXIM:
Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД – 90%.

Девятая схема.
Импульсный понижающий стабилизатор на микросхеме фирмы TEXAS:

Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле:
Iкз(А)= 0,5/R1(Ом)

Десятая схема.
Интегральный инвертор напряжения на микросхеме фирмы MAXIM:
Интегральный инвертор напряжения, КПД – 98%.

Одиннадцатая схема.
Два изолированных преобразователя на микросхемах фирмы YCL Elektronics:
Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

В основном, питание различных устройств и приборов осуществляется линейным стабилизатором. Это обусловлено привычкой и простотой схемы. Но при таком способе существует один серьезный недостаток нагрев и как следствие более высокое энергопотреблении. Хорошим выходом из данной ситуации является использование достаточно распространенных сегодня специализированных микросхем который осуществляют преобразование номинала постоянного напряжения в обоих направлениях.

Резисторы R3, R2 являются классическим делителем, с них поступает на пятый вывод обратной связи преобразователя .


Работа схемы: Для установки нужного нам значения в вольтах на выходе микросхемы mc34063 достаточно выбрать нужные номиналы сопротивлений R3, R2. Их значения можно рассчитать с помощью специальной программы расчетки для mc34063, архив с которой вы можете скачать по ссылке чуть выше. Сопротивление R1 ограничивает ток на выходе микросхемы и предохраняет ее от короткого замыкания.

3.3В из 1.2/1.5В на MCP1640

В радиолюбительской практике возникают случаи, когда для питания самоделки необходимо напряжение 3.3 В, но под рукой имеется только типа АА или ААА на 1.2 - 1.5 В. Тогда на помощь приходят микросборки повышающих преобразователей dc dc


MCP1640 имеет отличный КПД до 96%, поддерживает входной уровень от 0.35 Вольт и более. Выходное регулируется в диапазоне от 2.0 В до 5.5 В. На схеме номиналы радиокомпонентов подобраны, для получения 3.3 В от типовой пальчиковой батарейки. Вывод VFB применяется для регулировки с помощью резистивного делителя. Номинальное напряжение обратной связи в этом DC DC преобразователе составляет 1.21 В при регулировки выходного. Максимальный выходной ток - 150 мА.

На микросхеме LTC3400

КПД этой микросборки 92%. Начальное напряжение - 0.85 В, а выходное лежит в интервале от 2.5 В до 5 В и настраивается с помощью формулы:

V OUT = 1.23V ×

Вывод микросборки LTC3400 SHDN нужно соединить с V in через подтягивающее сопротивление номиналом 1 МОм. Максимальный ток, который можно получить на выходе, составляет 100 мА. Таким образом LTC3400 или MCP1640 в схеме DC DC преобразователя идеально подойдут для ваших микроконтроллерных самоделок, где питание реализовано от типовых батареек.

Схема очень похожа, но есть незначительные отличия.


Номиналы для схемы DC-DC повышающего преобразователя соответствуют выходному "U" в 12 вольт, если требуется другой номинал используйте туже программу расчетку, что и к схеме выше.

на специализированных интегральных микросхемах смотри здесь.

Стандартная схема двухтактного импульсного DC-DC на микросхеме TL494, работает с частотой 112 кГц. На выходе схемы стоят высоковольтные выпрямительные диоды удваивающие вольты. В схеме в качестве Т1 применяется готовый высокочастотный трансформатор марки EL33-ASH из блока питания сгоревшего принтера . Измерив сопротивления обмоток выяснилось, что соотношение их (I к II) - 1:20.


Защиту схемы от перегрузки и обратного включения питания можно сделать через предохранитель и диод, подсоединенные в прямом направлении на входе.

Схема DC DC из 12 В постоянного в 1000В

Работа схемы: стабильность выходного уровня такова, что при колебании тока нагрузки от 0 до 200 мкА изменение выходного "U" невозможно обнаружить по четырехзначному цифровому вольтметру, т.е. оно не превышает 0,1 %. Схема DC DC преобразователя собрано по традиционному варианту с использованием обратного выброса "U" самоиндукции. Транзистор VT1, работающий в ключевом режиме, подает на первичную обмотку трансформатора Т1 напряжение источника питания на время, равное 10...16 мкс. В момент закрывания транзистора энергия, накопленная в магнитопроводе трансформатора, преобразуется в импульс амплитудой около 250 В на вторичной обмотке (около 40 В на первичной).

Иногда возникает необходимость получить большое напряжение, обладая только питающим элементом на 1,5 вольта. В этом случае на помощь придут повышающие преобразователи напряжения DC DC. Приведенная на рисунке ниже схема преобразователя демонстрирует один из методов получения 90 В от простой батарейки 1.5 В.

Используемая в схеме DC DC преобразователя микросхема типа LT1073 (Linear Technology) работает в повышающем режиме и при входном уровне от одного вольта. Переключающий транзистор, внутри микросборки между выводами SW1 и SW2 соединяет один конец индуктивности L1 с корпусом. Магнитное поле накапливается в катушке, и после выключения транзистора через диод D1 начинает идти ток, заряжающий конденсатор C3. Диодный каскад из D1, D2, D3 (быстрые диоды с обратным напряжением 200 В, например, MUR120), C2, C3 и C4 умножает выходное напряжение в четыре раза.


Контур преобразователя замыкается через делитель напряжения (на резисторах сопротивлением 10 МОм и 24 кОм). Эти сопротивления должны быть обязательно металлоплёночными с погрешностью не более 1%. При использовании компонентов указанных на схеме DC DC и катушки индуктивности Coilcraft DO1608C-154 можно получить выходное напряжение уровнем до 90 В, но правда ток при этом будет только несколько миллиампер.

Компания STMicroelectronics выпускает микросхемы для создания неизолированных DC/DC-преобразователей с высокими качественными показателями, требующие небольшого количества внешних компонентов.

Постоянное развитие ИС для DC/DC-преобразователей характеризуется следующими факторами:

  • повышением рабочих частот преобразования (максимальная частота преобразования для микросхем STMicroelectronics составляет 1,7МГц), что позволяет резко уменьшить размеры внешних компонентов и минимизировать площадь печатной платы;
  • уменьшением размеров корпусов микросхем благодаря высоким частотам преобразования (корпус DFN6D имеет размеры всего 3х3мм);
  • повышением удельной плотности выходного тока (корпус DFN6D обеспечивает выходной ток до 2,0А; корпуса DFN8 и PowerSO-8 могут работать при токах до 3,0А);
  • повышением КПД и снижением потребляемой мощности при отключенном состоянии, что особенно важно для приборов с автономным питанием.

Компания STM разделяет свои микросхемы для неизолированных DC/DC-преобразователей на две группы. Первая группа имеет рабочую частоту до 1 МГц (параметры сведены в таблицу 1), вторая группа — с частотой преобразования 1,5 и 1,7 МГц (параметры см. в таблице 2). Во вторую группу добавлены также и микросхемы серии ST1S10 с номинальной частотой преобразования 0,9 МГц (максимальная частота преобразования для этих микросхем может достигать 1,2 МГц). Микросхемы серии ST1S10 могут работать при синхронизации от внешнего генератора в диапазоне частот от 400 кГц до 1,2 МГц.

Таблица 1. Микросхемы STMicroelectronics для DC/DC-преобразователей с частотой преобразования до 1 МГц

Наименование Топология Vвх., В Vвых., В Iвых., А Частота
преобразования, МГц
Вход
отключения
Корпус
L296 Step-down 9…46 5,1…40 4 до 200 Есть MULTIWATT-15
L4960 Step-down 9…46 5,1…40 2,5 до 200 Нет HEPTAWATT-7
L4962 Step-down 9…46 5,1…40 1,5 до 200 Есть HEPTAWATT-8, DIP-16
L4963 Step-down 9…46 5,1…40 1,5 42…83 Нет DIP-18, SO-20
L4970A Step-down 12…50 5,1…50 10 до 500 Нет MULTIWATT-15
L4971 Step-down 8…55 3,3…50 1,5 до 300 Есть DIP-8, SO-16W
L4972A Step-down 12…50 5,1…40 2 до 200 Нет DIP-20, SO-20
L4973D3.3 Step-down 8…55 0,5…50 3,5 до 300 Есть DIP-8, SO-16W
L4973D5.1 Step-down 8…55 5,1…50 3,5 до 300 Есть DIP-8, SO-16W
L4974A Step-down 12…50 5,1…40 3,5 до 200 Нет MULTIWATT-15
L4975A Step-down 12…50 5,1…40 5 до 500 Нет MULTIWATT-15
L4976 Step-down 8…55 0,5…50 1 до 300 Есть DIP-8, SO-16W
L4977A Step-down 12…50 5,1…40 7 до 500 Нет MULTIWATT-15
L4978 Step-down 8…55 3,3…50 2 до 300 Есть DIP-8, SO-16W
L5970AD Step-down 4,4…36 0,5…35 1 500 Есть SO-8
L5970D Step-down 4,4…36 0,5…35 1 250 Есть SO-8
L5972D Step-down 4,4…36 1,23…35 1,5 250 Нет SO-8
L5973AD Step-down 4,4…36 0,5…35 1,5 500 Есть HSOP-8
L5973D Step-down 4,4…36 0,5…35 2 250 Есть HSOP-8
L5987A Step-down 2,9…18 0,6…Vвх. 3 250…1000 Есть HSOP-8
L6902D Step-down 8…36 0,5…34 1 250 Нет SO-8
L6920D Step-up 0,6…5,5 2…5,2 1 до 1000 Есть TSSOP-8
L6920DB Step-up 0,6…5,5 1,8…5,2 0,8 до 1000 Есть miniSO-8

Таблица 2. Микросхемы для понижающих DC/DC-преобразователей с частотой преобразования от 0,9 до 1,7 МГц

Серия Наименование Iвых., А Vвх.,В Vвых., В Частота
преобразования, МГц
Вход
отключения
Корпус
ST1S03 ST1S03PUR 1,5 3…16 0,8…12 1,5 Нет DFN6D (3х3 мм)
ST1S03A ST1S03AIPUR 3…5.5 0,8…5.5 1,5 Есть DFN6D (3х3 мм)
ST1S03APUR 1,5 Нет
ST1S06 ST1S06PUR 2,7…6 0,8…5.5 1,5 Есть DFN6D (3х3 мм)
ST1S06A ST1S06APUR 1,5 Нет
ST1S06xx12 ST1S06PU12R 2,7…6 1,2 1,5 Есть DFN6D (3×3 мм)
ST1S06xx33 ST1S06PU33R 3,3 1,5 Есть
ST1S09 ST1S09IPUR 2,0 2,7…5,5 0,8…5 1,5 Есть DFN6D (3х3 мм)
ST1S09PUR 1,5 Нет
ST1S10 ST1S10PHR 3,0 2,5…18 0,8…0,85Vвх. 0,9 (0,4…1,2)* Есть PowerSO-8
ST1S10PUR DFN8 (4×4 мм)
ST1S12xx ST1S12GR 0,7 2,5…5,5 1,2…5 1,7 Есть TSOT23-5L
ST1S12xx12 ST1S12G12R 1,2
ST1S12xx18 ST1S12G18R 1,8
* - в скобках указан диапазон частот преобразования при синхронизации от внешнего генератора.

Основная часть микросхем для DC/DC-преобразователей из таблицы 1 имеет частоту преобразования до 300 кГц. На таких частотах облегчается выбор индуктивностей на выходе DC/DC, т. к. для рабочих частот микросхем из таблицы 2 (1,5 и 1,7 МГц) на частотные характеристики индуктивностей необходимо обращать особое внимание. На рисунках 1 и 2 в качестве примеров приведены рекомендуемые производителем схемы включения микросхем L5973D (выходной ток до 2,0 А при частоте преобразования 250 кГц) и ST1S06 (выходной ток до 1,5 А при частоте преобразования 1,5 МГц).

Рис. 1.


Рис. 2.

Из рисунков 1 и 2 видно, что микросхемы с относительно низкими частотами преобразования по современным меркам требуют большего количества внешних электронных компонентов, имеющих увеличенные размеры по сравнению с компонентами преобразователей, работающих на частотах более 1 МГц. Микросхемы для DC/DC из таблицы 2 обеспечивают гораздо меньшие размеры печатной платы, но необходимо более внимательно относиться к разводке проводников для уменьшения излучаемых электромагнитных помех.

Некоторые микросхемы позволяют управлять включением и выключением конвертеров благодаря наличию входа INHIBIT. Пример включения таких микросхем приведен на рис. 3. ST1S09 (без входа INHIBIT) и ST1S09I (с входом INHIBIT). В нижней части этого рисунка приведены рекомендуемые значения номиналов резисторов R1 и R2 для формирования выходных напряжений 1,2 и 3,3 В.

Рис. 3.

При наличии на входе управления VINH высокого уровня напряжения (более 1,3 В) микросхема ST1S09I находится в активном состоянии; при напряжении на этом входе менее 1,4 В DC/DC-преобразователь отключается (собственное потребление при этом составляет менее 1 мкА). Вариант микросхемы без входа управления на выводе 6 вместо входа VINH имеет выход «PG = Power Good» (питание в норме). Формирование сигнала «Power Good» проиллюстрировано на рис. 4. Когда на входе «FB» (FeedBack или вход обратной связи) достигается значение 0,92хVFB, происходит переключение компаратора, и на выходе PG формируется высокий уровень напряжения, информирующий о том, что выходное напряжение находится в допустимых пределах.


Рис. 4.

Эффективность преобразования
на примере микросхем ST1S09 и ST1S09I

Эффективность понижающего DC/DC-преобразователя сильно зависит от параметров интегрированных в микросхемы транзисторов с изолированным затвором (MOSFET), выполняющих роль ключа. Одна из проблем высокочастотных преобразователей связана с током заряда затвора транзистора при управлении им с помощью ШИМ-контроллера. Потери в этом случае практически не зависят от тока в нагрузке. Вторая проблема, снижающая КПД, — рассеиваемая в транзисторе мощность во время переключения из одного состояния в другое (в эти промежутки времени транзистор работает в линейном режиме). Уменьшить потери можно, обеспечив более крутые фронты переключения, но это повышает электромагнитные шумы и помехи по цепям питания. Еще одна причина снижения КПД преобразователя — наличие активного сопротивления «сток — исток» (Rdson). В правильно спроектированной схеме КПД достигает максимального значения при равенстве статических (омических) и динамических потерь. Следует учесть, что выходной выпрямительный диод также вносит свою долю динамических и статических потерь. Некорректно выбранная индуктивность на выходе DC/DC-преобразователя может дополнительно существенно снизить эффективность преобразования, что заставляет помнить и об ее высокочастотных свойствах. В самом плохом случае на высоких частотах преобразования выходной дроссель может потерять свои индуктивные свойства, и преобразователь просто не будет работать.

Компания STMicroelectronics уже много лет выпускает мощные полевые транзисторы и диоды с очень высокими динамическими и статическими характеристиками. Обладание отлаженной технологией производства транзисторов MOSFET позволяет компании интегрировать свои полевые транзисторы в микросхемы для DC/DC-преобразователей и достигать высоких значений КПД преобразования.

На рис. 5 (а, б, в) в качестве примера приведены типовые зависимости эффективности преобразования от некоторых параметров при разных условиях работы. Графики зависимости КПД от величины выходного тока достигают максимальных значений около 95% при токе 0,5 А. Далее спад этих характеристик довольно пологий, что характеризует лишь небольшое увеличение потерь при росте выходного тока до максимального значения.


Рис. 5а.

На рис. 5б показаны зависимости КПД от уровня выходного напряжения DC/DC-преобразователей на микросхемах ST1S09 и ST1S09I. С ростом выходного напряжения КПД возрастает. Это объясняется тем, что падение напряжения на транзисторах выходного каскада практически не зависит от выходного напряжения при неизменном выходном токе, поэтому с ростом выходного напряжения процент вносимых потерь будет уменьшаться.


Рис. 5б.

На рис. 5в приведены зависимости КПД от величины индуктивности на выходе. В диапазоне от 2 до 10 мкГн эффективность преобразования практически не изменяется, что позволяет выбирать величину индуктивности из широкого диапазона номиналов. Конечно, нужно стремиться к максимально возможному уровню индуктивности для обеспечения лучшей фильтрации напряжения пульсаций выходного тока. Понятно, что с ростом значений выходного тока КПД уменьшается. Это объясняется ростом потерь в выходных каскадах DC/DC-преобразователей.


Рис. 5в.

Сравнение с микросхемами других производителей

В таблицах 3, 4 и 5 приведены параметры близких по функциональному значению микросхем от других производителей.

Из таблицы 3 видно, что FAN2013MPX — это полный аналог для микросхемы ST1S09IPUR, но у компании STMicroelectronics дополнительно в этой серии есть микросхема ST1S09PUR с наличием выхода «Power Good», что расширяет выбор разработчика.

Таблица 3. Близкие замены микросхем для DC/DC-преобразователей от других производителей

Производитель Наименование Iвых макс., А Частота
преобразования, МГц
Power Good Совместимость
по выводам
Корпус
STMicroelectronics ST1S09PUR 2 1,5 Есть Есть DFN3x3-6
ST1S09IPUR Нет Есть
Fairchild Semiconductor FAN2013MPX 2 1,3 Нет Есть DFN3x3-6

В таблице 4 приведены функциональные замены (нет совместимости по выводам) от других производителей для микросхем ST1S10. Основное преимущество микросхем ST1S10 — наличие синхронного выпрямления в выходных каскадах, что обеспечивает более высокий КПД преобразования. Кроме того, корпус DFN8 (4х4 мм) имеет меньшие размеры по сравнению с корпусами функционально близких микросхем других производителей. Внутренняя схема компенсации позволяет сократить количество внешних компонентов обвязки микросхем.

Таблица 4. Близкие замены микросхем ST1S10PxR для понижающих DC/DC-преобразователей от других производителей

Производитель Наименование Iвых макс., А Синхронное выпрямление Компенсация Мягкий запуск Совмести- мость
по выводам
Корпус
STMicroelectronics ST1S10PHR 3 Есть Внутренняя Внутренний - PowerSO-8
ST1S10PUR DFN8 (4×4 мм)
Monolithic Power Systems MP2307/MP1583 3 Есть/Нет Внешняя Внешний Нет SO8-EP
Alpha & Omega Semiconductor AOZ1013 3 Нет Внешняя Внутренний Нет SO8
Semtech SC4521 3 Нет Внешняя Внешний Нет SO8-EP
AnaChip AP1510 3 Нет Внутренняя Внутренний Нет SO8

В таблице 5 показаны возможные замены для микросхем ST1S12. Основное преимущество микросхем ST1S12 — большее значение максимально допустимого выходного тока: до 700 мА. Микросхема MP2104 фирмы MPS совместима по выводам с микросхемой ST1S12. Микросхемы LM3674 и LM3671 можно рассматривать только в качестве близкой функциональной замены для ST1S112 из-за отсутствия совместимости по выводам.

Таблица 5. Близкие замены микросхем ST1S12 для понижающих DC/DC-преобразователей от других производителей

Производитель Наименование Iвых
(макс.), мА
Частота
преобразования, МГц
Vвх (макс.), В Вход
отключения
Совмести- мость
по выводам
Корпус
STMicroelectronics ST1S12 700 1,7 5,5 есть - TSOT23-5L
Monolithic Power Systems MP2104 600 1,7 6 есть есть TSOT23-5L
National Semiconductor LM3674 600 2 5,5 есть нет SOT23-5L
LM3671 600 2 5,5 есть нет SOT23-5L

Выбор микросхем для
DC/DC-преобразователей на сайте

Для быстрого поиска электронных компонентов по известным параметрам удобнее всего воспользоваться сайтом . Для параметрического поиска на этом сайте настоятельно рекомендуется установить и использовать бесплатную программу для просмотра сайтов (браузер) «Google Chrome». Работа в этом браузере ускоряет поиск в несколько раз. Микросхемы для DC/DC-преобразователей компании STMicroelectronics можно найти на сайте по следующему пути: «Управление питанием» ® «ИМС для DC/DC» ® «Регуляторы (+ключ)». Далее можно выбрать бренд «ST» и активировать фильтр «Склад» для выбора только тех компонентов, которые имеются на складе. Результат этих действий показан на рис. 6. Можно сделать более конкретную выборку по требуемым параметрам, применяя другие фильтры.

Заключение

Особенно важен правильный выбор микросхем для DC/DC-преобразователей в приборах с автономными источниками питания. В некоторых случаях выбор подходящей схемы питания может оказаться трудной задачей, но, уделив достаточно времени проработке и выбору схемы электропитания устройства, можно добиться определенного преимущества над конкурентами за счет более компактного и недорогого решения с более высокой эффективностью преобразования электрической энергии. Микросхемы для DC/DC-преобразователей STMicroelectronics облегчают выбор и позволяют реализовать заложенные в них преимущества при создании конкурентоспособных схем электропитания.

Получение технической информации, заказ образцов, поставка — e-mail:

Рассказать друзьям