Кожухотрубные и пластинчатые теплообменники преимущество и недостатки. Паяные пластинчатые теплообменники

💖 Нравится? Поделись с друзьями ссылкой

Пластинчатые паяные теплообменники применяют в холодильной технике, климатизационном оборудовании, выступая в качестве конденсатора или испарителя. Также косвенно их можно использовать в пищевой промышленности в роли охладителей или пастеризаторов молочной продукции, пивных напитков и т.д.

Зачастую называют сварными пластинчатыми теплообменниками, что в своем роде правильно, потому что процесс пайки нержавеющих пластин схож с процессом сварки.

Конструкция пластинчатого паяного теплообменника:

Паяные пластинчатые теплообменники изготавливают из нержавеющих гофрированных пластин, которые в свою очередь соединяются друг с другом, а в итоге в целый пакет посредством пайки в вакууме, где используется медный или никелевый припой. После того как все пластины спаяли в готовую конструкцию (главное это сделать грамотно), к внешним пластинам крепят патрубки, которые потом уже на объекте, либо каком либо строительстве соединяются с трубопроводными системами дома, коттеджа или промышленного предприятия.


При соединении пластин в пластинчатых паяных теплообменниках, соседние соединяются так что бы гофры у них были направлены в разные стороны. В некоторых точках стенки пластин соединяются, это нужно в качестве опорных точек (точек жесткости) для всего пакета пластин. По всем данным точкам производится дополнительная пайка. Это необходимо для того, чтобы пластинчатый теплообменник смог выдержать высокое давление и не разорваться где-нибудь по шву. Причем давление может достигать 4 и даже 5 МПа.


Паяные пластинчатые теплообменники отличаются многими моментами в изготовлении от разборных пластинчатых. Это связано с тем, что в отличие от разборных в паяных теплообменниках края пластин загибаются друг к другу, в месте загиба между пластинами прокладывается медная пластинка (толщина ее такая же как и сама гофрированная пластина). После чего весь пакет пластин сдавливается более прямыми и толстыми пластинами с одной и другой стороны, к которым впоследствии привариваются патрубки для соединения с трубопроводными системами. В конце всего процесса соединения, сдавливания и приваривания, производится пайка пакета пластин в специальной вакуумной камере.

В паяных пластинчатых теплообменниках в роли припоя используют медь (Меднопаяный пластинчатый теплообменник). Если же в теплообменнике по заказу нужно использовать в качестве рабочей среды какую то агрессивную жидкость, например, аммиак, то припой делаю никелевым, и такие теплообменники называются никелевыми.


Преимущества паяных пластинчатых теплообменников:

Основными преимуществами паяных пластинчатых теплообменников является то, что они малогабаритны и очень экономичны. Это связано с тем, что у паяных нет зажимных плит, поэтому они раз в десять легче разборных теплообменников, а также по цене паяные выигрывают в среднем треть от цены разборных, при одинаковой мощности и характере теплообмена.

Также паяные пластинчатые теплообменники могут выдерживать длительные нагрузки по температуре, даже если греющая рабочая среда температурой выше 150С.

При загрязнении паяных пластинчатых теплообменников процесс чистки и промывки занимает максимум 3 часа, причем очистку модно проводить, не разбирая сам теплообменник. Это можно сделать химической промывкой при использовании специальной химии, которая не будет разрушать поверхность пластин и медный (никелевый) припой. Таким образом, процесс обслуживания не требует больших перерывов в работе всей системы теплоснабжения, и причем не требуется текущего обслуживания.

Пластинчатый теплообменник - один из видов рекуперативных теплообменных аппаратов, в основе работы которого лежит теплообмен между двумя средами через контактную пластину без смешения.

Типы, устройство и принцип работы пластинчатых теплообменников

Принцип работы всех пластинчатых теплообменных аппаратов одинаков:

  1. На входы ТО подаются теплоносители.
  2. Теплоносители движутся по внутреннему контуру теплообменного агрегата, который сформирован пакетом пластин.
  3. В процессе движения, контактируя с поверхностью пластины, более горячий теплоноситель отдает часть тепла нагреваемой среде.
  4. С выходов теплоносители, с изменившейся температурой, поступают в систему отопления, водоснабжения или вентиляции.
  5. Входные и выходные отверстия теплообменных аппаратов могут иметь различное сечение (у агрегатов Ридан диаметр достигает 500 мм), и с помощью патрубков подключаются к трубопроводу основной системы.

Данный принцип действия и устройство пластинчатого ТО хорошо продемонстрированы в следующем видео:

Принцип работы пластинчатого теплообменника

Виды пластинчатых теплообменников в зависимости от конструкции:

  • разборные;
  • паяные;
  • сварные;
  • полусварные.

Пластинчатые разборные теплообменные аппараты

Устройство, в котором основную функцию теплопередачи между теплоносителями выполняет пакет пластин. Среды не смешиваются между собой благодаря чередованию пластин с плотными резиновыми прокладками, которые образуют два контура движения.

Свое название «разборные» подобный тип агрегатов получил за то, что пакет пластин не только собирается, но и разбирается во время регулярного обслуживания (промывки) или ремонта.

Конструкционная схема разборного теплообменника

Разборный теплообменник состоит из следующих элементов:

  • Неподвижная прижимная плита - основной элемент.
  • Пластины теплообменного аппарата, выполнены из нержавеющей стали или титана, прижимаются друг к другу с использованием уплотнительных прокладок. Количество пластин зависит от технических параметров и требований к оборудованию.
  • Пакет пластин - главный функциональный элемент, который образует внутренний контур устройства и осуществляет теплообмен.
  • Несущая база - направляющая балка, на которую надеваются пластины во время сборки агрегата.
  • Подвижная прижимная плита - прижимает весь пакет к неподвижной прижимной плите с помощью элементов крепления: стяжных болтов, подшипников, стопорных шайб.
  • Опорная станина - вертикальный элемент, к которому прикрепляются направляющие балки (верхняя и нижняя несущие балки).

Благодаря высокой скорости рабочих сред внутри разборных теплообменных аппаратов отложения и засоры скапливаются на его внутренних поверхностях медленнее, чем на поверхностях кожухотрубных агрегатов.

Несомненное достоинство данного вида ТО - возможность полной разборки аппарата, что позволяет производить не только промывку пластин, но и их механическую очистку.

Также стоит отметить, что возможность полной разборки агрегата позволяет не заменять его целиком в случаях протечек, а быстро выявить нерабочие элементы, поменять их и вновь запустить теплообменник в эксплуатацию. При наличии необходимых запасных частей «под рукой» вся процедура займет от нескольких часов до 1 часа.

Паяные теплообменные аппараты

Паяные теплообменники также в своей основе содержат пакет пластин, но отличие от разборных заключается в том, что они спаяны между собой, поэтому сборка/разборка такого пакета - невозможна.

Пайка производится с помощью никеля или меди, поэтому обозначают два основных вида паяных пластинчатых теплообменников: никельпаяный и меднопаяный. Никелевый припой используется для аппаратов, которые будут работать с более агрессивными средами.

Паяный пластинчатый теплообменник в разрезе

Паяные теплообменные аппараты применяются в основном в бытовом сегменте благодаря своей низкой стоимости, простоте и небольшим габаритам. Чаще всего подобный тип устройств можно встретить в системах отопления частных домов, где теплообменник подключается к водонагревательному котлу.

Полусварные теплообменники

Полусварные теплообменные аппараты - агрегаты, в которых пакет пластин сделан комбинированным способом:

  • пластины попарно свариваются между собой;
  • с внешней стороны такого сдвоенного мини-пакета прикрепляются уплотнения;
  • далее прикрепляется следующий сваренный мини-пакет.

Места попарной сварки пластин

Подобный тип конструкции позволяет использовать полусварные теплообменные аппараты в работе с агрессивными средами или в охлаждении, поскольку сварка пластин исключает возможность утечки фреона в охлаждающем контуре.

Сварные теплообменники

Сварные теплообменные аппараты - устройства, в которых пластины сварены между собой без использования уплотнителей.

Внешний вид сварного теплообменника

Один из потоков теплоносителей движется по гофрированным каналам, второй по трубчатым. Принцип работы пластинчатого сварного теплообменника показан в этом видео:

Принцип работы сварного теплообменника

Сварные теплообменные аппараты применяются в технических процессах с предельными параметрами: высокими температурами (до 900 градусов Цельсия), давлением (до 100 бар) и крайне агрессивными средами, поскольку отсутствие резиновых уплотнителей и сварной метод сцепления исключают возможность протечки и смешения сред.

Основные недостатки подобного типа агрегатов: высокая стоимость и габариты.

Применение пластинчатых теплообменников

Пластинчатые теплообменные аппараты используются в:

  • энергетике;
  • отоплении;
  • вентиляции и кондиционировании;
  • судоходстве;
  • пищевой промышленности;
  • машиностроении;
  • автомобилестроении;
  • металлургии.

Технические характеристики пластинчатых теплообменников

Пластинчатый теплообменник имеет различные технические характеристики в зависимости от типа конструкции:

Плюсы и минусы пластинчатых теплообменников

Преимущества:

  • Удобство транспортировки и монтажа , поскольку пластинчатый теплообменник имеет меньшие габариты, чем другие виды рекуперативных теплообменных аппаратов.
  • Простота обслуживания - разборные, полусварные и сварные теплообменники легко промывать, так как они либо полностью разбираются, как в случае с разборными агрегатами, либо частично, предоставляя доступ к пластинам, как полусварные и сварные аппараты.
  • Высокая производительность - КПД пластинчатых агрегатов достигает 95%.
  • Цена - стоимость пластинчатых установок ниже, чем аналогичных кожухотрубных, спиральных или блочных агрегатов.

Недостатки:

  • Часто требуется заземление . Поскольку пластины имеют малую толщину - они подвержены воздействию блуждающих токов, что приводит к появлению дырок в них.
  • Более требовательны к качеству очистки теплоносителя . Так как между пластинами расстояние небольшое, то каналы будут загрязняться быстрее, чем внутренние поверхности кожухотрубного теплообменника, что в свою очередь приводит к снижению коэффициента теплопередачи и, как следствие, КПД пластинчатого теплообменника.

Заключение

Пластинчатый теплообменник - это современный тип теплообменных аппаратов, которые активно вытесняют аналоги устаревших типов, такие как кожухотрубные агрегаты. Этому способствует их компактность, низкая цена и высокие показатели технических характеристик.

В следующей статье мы рассмотрим, как происходит сборка и разборка пластинчатого теплообменника.

Подписывайтесь на наши новости!

Пластинчатые теплообменники от « Завода Триумф» сегодня являются одним из передовых и оптимальных решений проблем теплообмена на малом и большом производстве. Поэтому их активно применяют все промышленные отрасли.

Среди достоинств комплектующих можно отметить следующие:

  • низкие затраты на производство, обслуживание устройств не является дорогостоящим;
  • обеспечение эффективной и качественной тепловой передачи (коэффициент удалось повысить в 3-5 раз по сравнению с гладкотрубными теплообменниками);
  • экономичность благодаря использованию ассиметричных каналов;
  • устройство занимает небольшую площадь, так как использует наименьшую разницу температурного режима;
  • среди основных преимуществ пластинчатых теплообменников – эффект самоочищения при помощи потока с высокой турбулентностью;
  • мощность увеличивается за счет расширения пакета пластин.

Устройство является надежным и практичным, исключается смешение сред. Оборудование имеет небольшой вес, что предполагает легкость промывки и демонтажа.

Использование оборудования

Преимущества применения в эксплуатации теплообменников пластинчатого типа:

  • простота установки, использования и ремонта устройства;
  • для увеличения мощности предусматривается применение дополнительных пластин;
  • турбулизация потока позволяет производить наименьшее загрязнение рабочей поверхности;
  • небольшие габаритные параметры оснащения позволяют экономить производственную площадь и финансовые средства на обслуживание;
  • конфигурация уплотнения не дает жидкостям смешиваться;
  • комплектация предусматривает высокую стойкость перед коррозийными процессами.

Оборудование имеет оптимальную комплектацию. Устройство подбирается по требованиям заказчика. Предоставляется широкий выбор профилей и размерных параметров пластин. Максимально допустимая нагрузка для оснащения – 60 МВт. Поверхность теплообмена охватывает от 5 до 1750 квадратных метров.

Задачей этого узла является передача энергии от первоисточника к холодной рабочей жидкости: пластинчатый теплообменник распределяет тепло с помощью гофрированных пластин в качестве стенок, что защищает систему от смешивания сред.

При расчете пластинчатого теплообменника нужно принимать во внимание, что в основу аппарата закладываются:

  • неподвижные и прижимные плиты;
  • патрубки (входные и выходные) с разнообразными соединениями;
  • монтажная подставка;
  • направляющие;
  • метизы с резьбой.

Энергия передается между теплоносителями через пластины, выполненные из устойчивых к ржавчине инертных материалов. Последние обрабатываются методом штамповки, их толщина варьируется в пределах 0,4-1 мм. В собранном виде узел представляет собой плотно прилегающие тонкие панели, в которых предусмотрены щелевые каналы. У всех элементов с лицевой стороны есть контурное углубление, в которое закладывается резиновый уплотнитель (за счет него обеспечивается герметичное прилегание элементов).

Пластины единообразны по форме и материалу, они могут быть изготовлены из нержавеющей стали, титана, тугоплавких сплавов (выбирают в зависимости от сферы применения). Для производства уплотнителей используются сложные полимеры на базе синтетического каучука, их можно эксплуатировать с гликолем и неагрессивными средами, паром и высокотемпературными жидкостями, нефтесодержащими и масляными теплоносителями.

Принцип работы и схема агрегата

Устройство, расчет и промывка пластинчатых теплообменников для отопления основываются на том, что узел функционирует благодаря наличию 4 отверстий:

  • 2 отверстия для притока и отвода горячей рабочей среды;
  • 2 отверстия для обеспечения герметичной стыковки пластин и предотвращения смешивания теплоносителей – данную задачу выполняют уплотнители.

Движение жидкости в агрегате осуществляется по принципу завихрения потока. В результате из-за относительно небольшого сопротивления движению рабочей среды усиливается интенсивность передачи тепловой энергии. Также вследствие небольшого сопротивления при прохождении жидкости уменьшается количество накипи во внутренних полостях.

Принцип работы пластинчатого теплообменника, базирующийся на петлях и завихрениях, способствует многократному обмену энергией. В результате достигается максимальный КПД агрегата, на что оказывает положительное влияние и вывод патрубков в оба виды панелей – прижимные и неподвижные.

Устройство теплообменника идеально соответствует условиям эксплуатации: количество пластин увеличивается соразмерно потенциальным потребностям в мощности системы. Число рабочих элементов оказывает прямое влияние на КПД и производительность отопительного или охлаждающего оборудования.

Технические параметры моделей

При изучении ассортимента опираются на следующие технические характеристики:

  • материал, из которого изготовлены панели – это могут быть тугоплавкие соединения, тонкая листовая сталь, чистый титан;
  • максимально допустимое давление среды в агрегате обычно не превышает 25 кгс/см²;
  • в каждом узле число используемых пластин начинается от 7-10, их количество определяется будущей областью применения;
  • устройства способны выдержать температуру теплоносителя не выше 180°C.

Одна рабочая единица способна обеспечить площадь теплообмена в пределах 0,1-2100 кв. м.

Разновидности пластинчатых теплообменников

По специфике исполнения и возможностям применения устройства делятся на паяные, сварные и разборные.

Паяные модели

Представляют собой цельные устройства, в их конструкции не предусмотрены уплотнительные резинки. Пластины объединены друг с другом методом пайки. Достоинства решения:

  • бюджетная стоимость комплекта;
  • высокая эффективность и надежность;
  • компактные размеры;
  • легкость монтажа.

Паяные теплообменники распространены в системах вентиляции и кондиционирования, их применяют в турбинной и компрессорной технике, внедряют в холодильные установки.

Разборные

Образуются из комплекта панелей и полимерных уплотнителей. Причины широкого распространения разборных пластинчатых теплообменников:

  • низкая стоимость и простота монтажа;
  • возможность регулирования уровня производительности;
  • простота использования, отсутствие значительных эксплуатационных расходов;
  • минимальные периоды простоя;
  • невысокая энергоемкость;
  • возможность дальнейшей переработки при утилизации.

Узлы обрели широкое применение в системах отопления домов и обслуживания бассейнов, ГВС, климатической и холодильной технике, тепловых пунктах.

Полусварные и сварные

Здесь рабочие элементы соединяются посредством сварных швов, в конструкции отсутствуют герметизирующие прокладки. Характеристики моделей:

  • присутствуют условия для регулирования потока и промывки теплообменника;
  • высокая устойчивость к агрессивным средам;
  • возможность работы в условиях большого перепада рабочих температур;
  • максимальная температура носителя может достигать 300°С, допустимое давление – не выше 4.0 Мпа;
  • компактность узла, простота монтажа;
  • неподверженность воздействию агрессивных веществ и абразивов;
  • длительный эксплуатационный ресурс.

Сварные и полусварные модели распространены в пищевой, фармацевтической, химической промышленности, системах вентиляции, кондиционирования, рекуперации, тепловых насосах. Устройства обеспечивают охлаждение техники, позволяют координировать температуру воды в ГВС бань и аналогичных общественных объектов.

Преимущества и недостатки

Плюсы применения агрегатов:

  • высокая эффективность при небольших габаритах. Средний КПД устройств, применяемых в горячем водоснабжении и отоплении, достигает 80-85%. Соединительные порты расположены с одной стороны, что облегчает монтаж;
  • низкие показатели потери давления. Конструкция предусматривает возможность плавной регулировки ширины каналов, увеличение количества последних ведет к снижению гидравлических потерь. Уменьшение сопротивления среды позволяет снизить потребление электроэнергии насосами;
  • ремонтопригодность, экономичность и легкость монтажа. Разбор и промывку оборудования можно осуществить за несколько часов, небольшие загрязнения удаляются безразборным методом. Средний срок службы теплообменника составляет 10 лет, притом пластины обладают эксплуатационным ресурсом в 15-20 лет;
  • гибкость. Для увеличения мощности аппарата практикуется изменение поверхности его теплообмена. С ростом потребностей не обязательно заменять агрегат новым, достаточно добавить пластины;
  • низкая загрязняемость. Профили каналов обеспечивают самоочищение благодаря высокой турбулентности потока. Так снижается частота сервисного обслуживания;
  • индивидуальность. Специалисты рассчитывают и подбирают конфигурацию исходя из необходимых температурных графиков;
  • вибрационная устойчивость. Изделия не подвержены типичной двухплоскостной вибрации, из-за которой обычно повреждаются трубчатые теплообменники;
  • бесклеевые уплотнители легко заменить новыми, при этом они жестко фиксируются в каналах. Низкая вероятность появления протечек после механической очистки, они обнаруживаются сразу же (без разборки);
  • комплект не нуждается в специальном укрепленном основании и дополнительной теплоизоляции
  • средний срок окупаемости в зависимости от модели составляет 3-5 лет.

Слабой стороной агрегатов признаются высокие требования к качеству очистки рабочей среды. Так как между панелями остается небольшое расстояние, загрязнение каналов происходит быстрее по сравнению с полостями ближайшего конкурента – кожухотрубного теплообменника. Засорение ведет к понижению эффективности теплопередачи, уменьшению КПД устройства.

Критерии выбора

При определении оптимальной модели аппарата следует опираться на технические характеристики изделия:

  • схема подключения ГВС;
  • уровень тепловой нагрузки;
  • параметры греющей и нагреваемой среды.

В последнем пункте принимается во внимание такая информация, как входная и выходная температура в зимние и летние периоды, потенциальный расход среды и допустимые потери давления, процентное соотношение запаса мощности. Эти сведения берутся за основу при расчете производительности пластинчатого теплообменника.

Нюансы монтажа и подключения

Теплообменник применяется только в связке и не подразумевает самостоятельного использования. Агрегат во время установки окружают вспомогательным оборудованием, таким как обратные клапаны, контрольно-измерительные устройства в виде термометров и манометров, запорная арматура (ручные заслонки и задвижки), циркуляционные насосы.

Подключение производится по одной из следующих схем:

  • одноступенчатый параллельный (независимый) метод;
  • двухступенчатый смешанный;
  • двухступенчатый последовательный.

В первом случае образуется изрядная экономия полезной площади в зоне монтажа. Ключевое преимущество этого способа – простота исполнения (что важно в условиях ремонта, обслуживания, замены узла). Недостаток методики – отсутствие возможности подогрева холодной рабочей среды.

При двухступенчатом смешанном методе температура входящего теплоносителя повышается за счет обратного потока, в результате эффективность связки увеличивается на 35-40%. Но в этом случае для обеспечения горячего водоснабжения придется предусмотреть в системе два теплообменника, что увеличивает расходы на закупку и монтаж оборудования.

Последовательный двухступенчатый способ позволяет увеличить эффективность использования рабочей среды и стабилизировать нагрузку в сети. По сравнению с параллельной схемой здесь затраты на теплоноситель уменьшаются на 50%, на фоне смешанной методики – на 25%. Единственный недостаток решения – невозможность полной автоматизации теплового узла.

Сферы использования оборудования

Рассматриваемые модели применяются в коммунальном хозяйстве для достижения следующих целей:

  • дополнительное прогревание среды в горячем водоснабжении;
  • нагрев воды в бассейнах и бойлерах;
  • обеспечение независимого контура отопления от ЦТП или ТЭЦ;
  • вентиляция помещений;
  • прокладка теплых полов.

В таких условиях максимальная температура воды может составлять 180°C на фоне давления в пределах 10-16 кПа. Пластины изготавливаются из нержавейки толщиной 0,4 мм, для уплотнителей используется этиленпропилен.

В пищевой отрасли теплообменники задействованы при производстве растительных масел, молочных продуктов, спирта, сахара, пива. Они применяются в качестве элементов испарительных, охладительных, пастеризующих линий. Здесь актуальны паяные и разборные модели.

В металлургии пластинчатые компоненты включены в оборудование для охлаждения рабочих жидкостей. В данной отрасли в интенсивном охлаждении нуждаются плавильные печи, прокатные и разливочные механизмы, травильные растворы, гидравлические смазки.

Теплообменники в нефтегазовой сфере помогают подогревать и охлаждать жидкости, вещества, задействованные в крекинге и технологической подготовке сырья. Агрегаты применяют в качестве составных частей сетевых систем, оборудования для химобработки воды, обеспечения низкого давления. Пластины для газовой и нефтяной промышленности изготавливают на базе чистого титана в виде листов толщиной не более 0,7 мм. К маркам полимера, применяемым для производства уплотнительных прокладок, предъявляются высокие требования по устойчивости к химическому и термическому воздействию.

Пластинчатые теплообменники, востребованные в судостроении, служат охладителями для всей системы и главного двигателя. Носителями в подобных условиях являются моторные масла, отличающиеся по вязкости, морская вода, СОЖ. Агрегаты также актуальны в составе отопительных контуров и ГВС на крупных морских судах.

Всем уже давно известна двухступенчатая смешанная система горячего водоснабжения, реализованная на таком типе пластинчатых теплообменников, как моноблок. Моноблок - специальный тип пластинчатого теплообменника для двухступенчатой системы ГВС, в котором обе ступени размещены в одном корпусе, такой теплообменник имеет шесть патрубков.

  • Н1 - Вход обратного теплоносителя из системы отопления.
  • Н2 - Вход циркуляционной воды ГВС.
  • Н3 - Выход нагретой воды ГВС.
  • Н4 - Вход горячего теплоносителя из теплосети.
  • F3 - Вход холодной водопроводной воды.
  • F4 - Выход общего обратного теплоносителя в теплосеть.

Широту применения моноблока обусловили следующие факторы: большая компактность, по сравнению с двумя отдельными теплообменниками, и, соответственно, меньшая стоимость. Эти же факторы являются основными и, пожалуй, единственными плюсами моноблока. Попробуем определиться с минусами.

«Простота» монтажа

Кажется естественным то, что смонтировать маленький аппарат гораздо проще, чем два таких же. Но что мы получаем в результате монтажа моноблока? Смонтированный моноблок выглядит как человек-паук, опутанный гирляндами трубопроводов арматуры и измерительных приборов, если они присутствуют, конечно. Сразу же теряется такая важная вещь, как удобство обслуживания. Если в обычном пластинчатом теплообменнике все патрубки расположены на неподвижной плите (Н1-Н4) и для его обслуживания и ремонта требуется всего лишь отключение теплообменника и сброс давления, то для разборки моноблока потребуется отсоединение патрубков от подвижной задней плиты. Далее, если трубопроводы задней плиты перекрывают доступ к моноблочному теплообменнику, то это также усложняет доступ к нему. То есть для нормальной эксплуатации моноблока следует,во-первых, сделать грамотный проект привязки его к существующим трубопроводам теплоносителя, холодной и горячей воды с целью обеспечения нормального доступа для обслуживания и ремонта. И, во-вторых, следует предусмотреть специальный вариант крепления трубопроводов к задней плите (через какие либо съемные элементы) для того, чтобы обеспечить подвижность задней плиты без передвижения теплообменника с места. Поэтому зачастую смонтированный моноблок занимает объем не меньший, чем два отдельных теплообменника.

Вопросы надежности

Естественно, два отдельных аппарата надежнее одного, выполняющего такую же функцию. Что мы имеем при выходе из строя одного из теплообменников? В этом случае мы сможем работать с частичной нагрузкой системы ГВС, пока ремонтируется или обслуживается второй. Моноблок же при выходе из строя даже одной из ступеней должен быть выведен из работы весь, т. к. корпус один на обе ступени.

Функциональность, эффективность

В подборе моноблочного теплообменника тоже есть свои нюансы. Зачастую трудно или практически невозможно создать моноблочную компоновку двухступенчатой смешанной схемы ГВС, по эффективности равную двум отдельным теплообменникам. Это обусловлено тем, что используемый тип пластины в моноблоке для обеих ступеней один. И в пределах теплофизических свойств этого типа нам приходится решать задачу по компоновке пакетов для обеих ступеней, в то время, как первая и вторая ступени могут различаться, как минимум, по расходам, особенно по стороне теплоносителя. Например, требования для первой ступени - это способность пропустить суммарный расход теплоносителя системы отопления и теплоносителя второй ступени при обеспечении небольших гидравлических сопротивлений и среднем теплосъеме. Требования же для второй ступени - это относительно небольшие расходы по стороне теплоносителя и воды ГВС, более высокие допустимые гидравлические сопротивления и существенно больший теплосъем. То есть, если бы это были два отдельных теплообменника, то теплообменник первой ступени должен быть с большим диаметром патрубков и с «короткой» пластиной, а теплообменник второй ступени с меньшим диаметром патрубка и более «длинной» пластиной.

Рассмотрим вариант задания для подбора оборудования для двухступенчатой смешанной схемы. шсходные данные таковы: нагрузка системы ГВС 0,4 Гкал/ч, нагрев холодной воды с 5°С до 60°С, нагрузка системы топления 1,2 Гкал/ч, температурный график 150/70.

Разбивая нагрузку по ступеням, в соответствии с СП 41-101-95 для заданных условий получаем исходные данные для подбора теплообменников ступеней:

I ступень

II ступень

* NTU - число единиц переноса теплоты. Теплотехника. В. Н. Луканин, М. Г. Шатров и др., Высшая школа, Москва, 1999г.

Фактически величина NTU характеризует тот тепловой режим, на котором будет работать теплообменник. Чем больше NTU, тем больше должна быть тепловая «длина» пластины теплообменника.

В нашем случае видно, что теплообменник второй ступени должен обладать большей, почти на 50%, способностью к теплосъему (тепловой «длиной»), чем теплообменник первой ступени. Кроме того, расходы по греющей стороне обеих ступеней отличаются почти в три раза. Это означает, что если для теплообменника второй ступени достаточны патрубки Ду32, то для теплообменника первой ступени патрубки должны быть больше, не менее Ду50.

Пакет пластин

Как уже отмечалось выше, моноблок - это, по сути, два теплообменника, размещенных в одной раме. А значит, и два пакета пластин, размещенных в одной раме, разделенных разворотной пластиной, имеющей два (верхних или нижних) глухих отверстия порта. Обычно ближе к неподвижной плите находится пакет второй ступени, а за ней пакет первой ступени. Но из-заразных функций, выполняемых этими пакетами (см. выше), они имеют разную компоновку и количество пластин. ш так как все эти пакеты находятся в одном корпусе, есть вероятность того, что в процессе обслуживания произойдет ошибка при сборке всего пакета пластин моноблока. То есть, если после разборки моноблока пакеты поменять местами или неправильно их скомпоновать (например, пластины первой ступени с малой тепловой «длиной» установить для второй ступени и наоборот), то, вновь собрав аппарат, мы не получим от него тех характеристик, которые были заложены в него изначально.

С двумя отдельными аппаратами ситуация проще. В этом случае, даже неправильно собрав весь пакет, мы не получим такого фатального снижения тепловой мощности, расходов и изменения гидравлического сопротивления, как в случае с моноблоком.

Подводя итоги, сведем все плюсы и минусы пластинчатого теплообменника с моноблочной компоновкой в одну таблицу.

Плюсы и минусы

Плюсы

  • Меньшая начальная стоимость.
  • Отдельно моноблок компактнее двух теплообменников.

Минусы

  • Более сложный монтаж и неудобство в обслуживаниииз-запатрубков на прижимной плите.
  • Меньшая надежность.
  • Менее эффективная работа.
  • Требовательность при сборке пакета пластин.

Результат

Каждый для себя решает сам, что ему важнее - экономия средств или более надежная работа оборудования.

Рассказать друзьям